Naimark Problem for a Fractional Ordinary Differential Equation
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 195-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fractional ordinary differential equation, we consider a problem where the boundary conditions are given in the form of linear functionals. This permits covering a fairly broad class of linear local and nonlocal conditions. The fractional derivative is understood in the sense of Gerasimov–Caputo. A necessary and sufficient condition for the unique solvability of the problem is obtained. A representation of the solution via special functions is found. A theorem on the existence and uniqueness of the solution is proved.
Keywords: Gerasimov–Caputo fractional derivative, Naimark problem, fractional derivative, fractional equation, functional, Mittag-Leffler function.
@article{MZM_2023_114_2_a2,
     author = {L. Kh. Gadzova},
     title = {Naimark {Problem} for a {Fractional} {Ordinary} {Differential} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--202},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a2/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Naimark Problem for a Fractional Ordinary Differential Equation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 195
EP  - 202
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a2/
LA  - ru
ID  - MZM_2023_114_2_a2
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Naimark Problem for a Fractional Ordinary Differential Equation
%J Matematičeskie zametki
%D 2023
%P 195-202
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a2/
%G ru
%F MZM_2023_114_2_a2
L. Kh. Gadzova. Naimark Problem for a Fractional Ordinary Differential Equation. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 195-202. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a2/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] A. A. Kilbas, Teoriya i prilozheniya differentsialnykh uravnenii drobnogo poryadka (kurs lektsii), Metodologicheskaya shkola-konferentsiya “Matematicheskaya fizika i nanotekhnologii”, Samara, 2009

[3] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR

[4] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York–London, 1974 | MR

[5] R. L. Bagley, P. J. Torvik, “Fractional calculus in the transient analysis of viscoelastically damped structures”, AIAA Journal, 23:6 (1985), 918–925 | DOI

[6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[7] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993 | MR

[8] I. Podlubny, “Fractional Differential Equations”, Academic Press,, Math. in Sci. and Eng., 198, San Diego, CA, 1999 | MR

[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR

[10] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, 2000 | MR

[11] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR

[12] V. V. Uchaikin, Metod drobnykh proizvodnykh, Izd.“Artishok”, Ulyanovsk, 2008

[13] J. H. Barrett, “Differential equations of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR

[14] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monogr. in Math., Springer, Heidelberg, 2014 | MR

[15] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Armyanskoi SSR. Matem., 3:1 (1968), 3–29 | MR

[16] M. M. Dzhrbashyan, “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma–Liuvillya”, Izv. AN Armyanskoi SSR, 5:2 (1970), 71–96 | MR

[17] I. Ozturk, “On the theory of fractional differential equation”, Reports of Adyghe (Circassian) International Academy of Sciences, 3:2 (1998), 35–39

[18] N. Hayek, J. Trujillo, M. Rivero, B. Bonilla, J. C. Moreno, “An extension of Picard–Lindelöff theorem to fractional differential equations”, Appl. Anal., 70:3–4 (1999), 347–361 | MR

[19] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matem. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[20] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27:1 (1928), 1–54 | DOI | MR

[21] A. S. Smogorzhevskii, “Funktsii Grina lineinykh diferentsialnykh sistem v oblasti odnogo izmereniya”, Matem. sb., 7 (49):1 (1940), 179–196 | MR | Zbl

[22] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[23] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR

[24] L. Kh. Gadzova, “Obobschennaya kraevaya zadacha dlya differentsialnogo uravneniya vtorogo poryadka s drobnoi proizvodnoi”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 21:4 (2021), 10–14 | DOI

[25] L. Kh. Gadzova, “Generalized boundary value problem for a linear ordinary differential equation with a fractional discretely distributed differentiation operator”, Bull. Karaganda Univ. Math. Ser., 106:2 (2022), 108–116 | DOI

[26] L. Kh. Gadzova, “Obobschennaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Chelyab. fiz.-matem. zhurn., 7:1 (2022), 20–29 | DOI

[27] O. G. Novozhenova, Biografiya i nauchnye trudy Alekseya Nikiforovicha Gerasimova. O lineinykh operatorakh, uprugo-vyazkosti, elevteroze i drobnykh proizvodnykh, Pero, M., 2018