On the Monopolist Problem and Its Dual
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 181-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the functional $\Phi$ that arises in numerous economic applications, in particular, in the monopolist problem. A special feature of these problems is that the domains of such functionals are nonclassical (in our case, increasing convex functions). We use an appropriate minimax theorem to prove the duality relation for $\Phi$. In particular, an important corollary is obtained stating that the dual functional (defined on a space of measures and known as the "Beckmann functional) attains its minimum. The present approach also provides simpler proofs of some previously known results.
Keywords: monopolist problem, Dirichlet functional, minimax principle.
@article{MZM_2023_114_2_a1,
     author = {T. V. Bogachev and A. V. Kolesnikov},
     title = {On the {Monopolist} {Problem} and {Its} {Dual}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/}
}
TY  - JOUR
AU  - T. V. Bogachev
AU  - A. V. Kolesnikov
TI  - On the Monopolist Problem and Its Dual
JO  - Matematičeskie zametki
PY  - 2023
SP  - 181
EP  - 194
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/
LA  - ru
ID  - MZM_2023_114_2_a1
ER  - 
%0 Journal Article
%A T. V. Bogachev
%A A. V. Kolesnikov
%T On the Monopolist Problem and Its Dual
%J Matematičeskie zametki
%D 2023
%P 181-194
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/
%G ru
%F MZM_2023_114_2_a1
T. V. Bogachev; A. V. Kolesnikov. On the Monopolist Problem and Its Dual. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 181-194. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/

[1] J.-P. Rochet, P. Choné, “Ironing, sweeping, and multidimensional screening”, Econometrica, 66:4 (1998), 783–826 | DOI

[2] S. Hart, P. J. Reny, “Implementation of reduced form mechanisms: a simple approach and a new characterization”, Econ. Theory Bull., 3:1 (2015), 1–8 | DOI | MR

[3] C. Daskalakis, A. Deckelbaum, C. Tzamos, “Strong duality for a multiple-good monopolist”, Econometrica, 85:3 (2017), 735–767 | DOI | MR

[4] A. Kolesnikov, F. Sandomirskiy, A. Tsyvinski, A. Zimin, Beckmann's approach to multi-item multi-bidder auctions, arXiv: 2203.06837

[5] R. B. Myerson, “Optimal auction design”, Math. Oper. Res., 6:1 (1981), 58–73 | DOI | MR

[6] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl

[7] C. Villani, Topics in Optimal Transportation, Graduate Stud. in Math., 58, Amer. Math. Soc., Providence, RI, 2003 | MR

[8] V. I. Bogachev, “Zadacha Kantorovicha optimalnoi transportirovki mer: novye napravleniya issledovanii”, UMN, 77:5 (467) (2022), 3–52 | DOI

[9] V. I. Bogachev, A. V. Rezbaev, “Suschestvovanie reshenii nelineinoi zadachi Kantorovicha optimalnoi transportirovki”, Matem. zametki, 112:3 (2022), 360–370 | DOI

[10] V. I. Bogachev, A. N. Doledenok, I. I. Malofeev, “Zadacha Kantorovicha s parametrom i ogranicheniyami na plotnost”, Matem. zametki, 110:6 (2021), 922–926 | DOI

[11] M. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR

[12] F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, Birkäuser, Cham, 2015 | MR

[13] R. McCann, K. S. Zhang, A Duality and Free Boundary Approach to Adverse Selection, arXiv: 2301.07660

[14] C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR

[15] D. Azagra, “Global and fine approximation of convex functions”, Proc. Lond. Math. Soc. (3), 107:4 (2013), 799–824 | DOI | MR

[16] L. Brasco, M. Petrache, “A continuous model of transportation revisited”, J. Math. Sci. (N.Y.), 196:2 (2014), 119–137 | DOI | MR