Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_2_a1, author = {T. V. Bogachev and A. V. Kolesnikov}, title = {On the {Monopolist} {Problem} and {Its} {Dual}}, journal = {Matemati\v{c}eskie zametki}, pages = {181--194}, publisher = {mathdoc}, volume = {114}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/} }
T. V. Bogachev; A. V. Kolesnikov. On the Monopolist Problem and Its Dual. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 181-194. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a1/
[1] J.-P. Rochet, P. Choné, “Ironing, sweeping, and multidimensional screening”, Econometrica, 66:4 (1998), 783–826 | DOI
[2] S. Hart, P. J. Reny, “Implementation of reduced form mechanisms: a simple approach and a new characterization”, Econ. Theory Bull., 3:1 (2015), 1–8 | DOI | MR
[3] C. Daskalakis, A. Deckelbaum, C. Tzamos, “Strong duality for a multiple-good monopolist”, Econometrica, 85:3 (2017), 735–767 | DOI | MR
[4] A. Kolesnikov, F. Sandomirskiy, A. Tsyvinski, A. Zimin, Beckmann's approach to multi-item multi-bidder auctions, arXiv: 2203.06837
[5] R. B. Myerson, “Optimal auction design”, Math. Oper. Res., 6:1 (1981), 58–73 | DOI | MR
[6] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl
[7] C. Villani, Topics in Optimal Transportation, Graduate Stud. in Math., 58, Amer. Math. Soc., Providence, RI, 2003 | MR
[8] V. I. Bogachev, “Zadacha Kantorovicha optimalnoi transportirovki mer: novye napravleniya issledovanii”, UMN, 77:5 (467) (2022), 3–52 | DOI
[9] V. I. Bogachev, A. V. Rezbaev, “Suschestvovanie reshenii nelineinoi zadachi Kantorovicha optimalnoi transportirovki”, Matem. zametki, 112:3 (2022), 360–370 | DOI
[10] V. I. Bogachev, A. N. Doledenok, I. I. Malofeev, “Zadacha Kantorovicha s parametrom i ogranicheniyami na plotnost”, Matem. zametki, 110:6 (2021), 922–926 | DOI
[11] M. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR
[12] F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, Birkäuser, Cham, 2015 | MR
[13] R. McCann, K. S. Zhang, A Duality and Free Boundary Approach to Adverse Selection, arXiv: 2301.07660
[14] C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR
[15] D. Azagra, “Global and fine approximation of convex functions”, Proc. Lond. Math. Soc. (3), 107:4 (2013), 799–824 | DOI | MR
[16] L. Brasco, M. Petrache, “A continuous model of transportation revisited”, J. Math. Sci. (N.Y.), 196:2 (2014), 119–137 | DOI | MR