Differential Calculi in Group Algebras and Group Ends
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 163-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graphs generalizing Cayley graphs and arising from various actions of groups on themselves are studied. A relationship between such graphs and subalgebras of operators in a group ring is established, which permits one to obtain a formula for the number of ends of such graphs in terms of the dimensions of appropriate character spaces. Examples of group actions and the corresponding graphs are constructed. In particular, under the action by conjugation, the corresponding algebra turns out to be an algebra of derivations. The proposed construction is generalized to Fox derivatives.
Mots-clés : group action
Keywords: graph end, coarse geometry, derivation, Fox derivation.
@article{MZM_2023_114_2_a0,
     author = {A. A. Arutyunov},
     title = {Differential {Calculi} in {Group} {Algebras} and {Group} {Ends}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a0/}
}
TY  - JOUR
AU  - A. A. Arutyunov
TI  - Differential Calculi in Group Algebras and Group Ends
JO  - Matematičeskie zametki
PY  - 2023
SP  - 163
EP  - 180
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a0/
LA  - ru
ID  - MZM_2023_114_2_a0
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%T Differential Calculi in Group Algebras and Group Ends
%J Matematičeskie zametki
%D 2023
%P 163-180
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a0/
%G ru
%F MZM_2023_114_2_a0
A. A. Arutyunov. Differential Calculi in Group Algebras and Group Ends. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a0/

[1] A. A. Arutyunov, A. S. Mischenko, A. I. Shtern, “Derivatsii gruppovykh algebr”, Fundament. i prikl. matem., 21:6 (2016), 65–78

[2] A. A. Arutyunov, “Algebra differentsirovanii v nekommutativnykh gruppovykh algebrakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 308, MIAN, M., 2020, 28–41 | DOI

[3] A. A. Arutyunov, A. S. Mischenko, “Gladkaya versiya problemy Dzhonsona o derivatsiyakh gruppovykh algebr”, Matem. sb., 210:6 (2019), 3–29 | DOI | MR

[4] A. S. Mischenko, “Derivations of group algebras and Hochschild cohomology”, Differential Equations on Manifolds and Mathematical Physics, Trends Math., Birkhauser, Cham, 2021, 263–272 | MR

[5] A. A. Arutyunov, “O differentsirovaniyakh v gruppovykh algebrakh i drugikh algebraicheskikh strukturakh”, Vestnik rossiiskikh universitetov. Matematika, 27:140 (2022), 305–317 | DOI

[6] R. H. Fox, “Free differential calculus. I. Derivation in the free group ring”, Ann. of Math. (2), 57 (1953), 547–560 | DOI | MR

[7] R. H. Crowell, R. G. Fox, Introduction to Knot Theory, Ginn and Company, Boston, MA, 1963 | MR

[8] G. Massuyeau, V. Turaev, “Quasi-Poisson structures on representation spaces of surfaces”, Int. Math. Res. Not. IMRN, 2014:1 (2014), 1–64 | DOI | MR

[9] A. N. Kabanov, V. A. Romankov, “Strogo neruchnye primitivnye elementy svobodnoi metabelevoi algebry Li ranga 3”, Sib. matem. zhurn., 50:1 (2009), 82–95 | MR

[10] V. A. Roman'kov, “Superpositions of free Fox derivations”, PDM, 2022, no. 56, 28–32 | DOI

[11] A. V. Alekseev, A. A. Arutyunov, S. Silvestrov, On $(\sigma,\tau)$-derivations of group algebra as category characters, arXiv: 2008.00390

[12] J. A. Álvarez López, A. Candel, Generic Coarse Geometry of Leaves, Lecture Notes in Math., 2223, Springer, Cham, 2018 | MR

[13] A. A. Arutyunov, L. M. Kosolapov, “Derivations of group rings for finite and FC groups”, Finite Fields Appl., 76 (2021), 101921 | MR

[14] A. A. Arutyunov, A. V. Alekseev, “Complex of $n$-categories and derivations in group algebras”, Topology Appl., 275 (2020), 107002 | DOI | MR

[15] H. Freudenthal, “Über die Enden topologischer Räume und Gruppen”, Math. Z., 33:1 (1931), 692–713 | DOI | MR

[16] J. R. Stallings, “On torsion-free groups with infinitely many ends”, Ann. of Math. (2), 88 (1968), 312–334 | DOI | MR

[17] J. R. Stallings, Group Theory and Three-Dimensional Manifolds, Yale University Press, New Haven,, 1971 | MR

[18] R. Geoghegan, Topological Methods in Group Theory, Graduate Texts in Math., 243, Springer-Verlag, New York, 2008 | MR

[19] G. Peschke, “The theory of ends”, Nieuw Arch. Wisk. (4), 8:1 (1990), 1–12 | MR

[20] Y. Ma, J. Dydak, Coarse Freundenthal Compactification and Ends of Groups, arXiv: 2102.05002

[21] K. Mann, K. Rafi, Large Scale Geometry of Big Mapping Class Groups, arXiv: 1912.10914

[22] G. A. Niblo, “A geometric proof of Stallings' theorem on groups with more than one end”, Geom. Dedicata, 105 (2004), 61–76 | MR

[23] M. J. Dunwoody, “Cutting up graphs”, Combinatorica, 2:1 (1982), 15–23 | DOI | MR

[24] W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR

[25] Yu. M. Gorchakov, Gruppy s konechnymi klassami sopryazhennykh elementov, Nauka, M., 1978 | MR

[26] H. Hopf, “Enden offener Räume und unendliche diskontinuierliche Gruppen”, Comment. Math. Helv., 16 (1944), 81–100 | DOI | MR

[27] A. A. Arutyunov, A Combinatorial View on Derivations in Bimodules, arXiv: 2208.05478