On the Computational Complexity of Compressed Power Series
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 113-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We present computational algorithms and complexity estimates for power series in which all exponents are positive integers raised to one and the same integer power $\ge2$.
Keywords: algorithm, power series, computational complexity, fast algorithm, FEE method, Faulhaber's formula, Bernoulli numbers.
@article{MZM_2023_114_1_a8,
     author = {E. A. Karatsuba},
     title = {On the {Computational} {Complexity} of {Compressed} {Power} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a8/}
}
TY  - JOUR
AU  - E. A. Karatsuba
TI  - On the Computational Complexity of Compressed Power Series
JO  - Matematičeskie zametki
PY  - 2023
SP  - 113
EP  - 120
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a8/
LA  - ru
ID  - MZM_2023_114_1_a8
ER  - 
%0 Journal Article
%A E. A. Karatsuba
%T On the Computational Complexity of Compressed Power Series
%J Matematičeskie zametki
%D 2023
%P 113-120
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a8/
%G ru
%F MZM_2023_114_1_a8
E. A. Karatsuba. On the Computational Complexity of Compressed Power Series. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a8/