Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a5, author = {V. P. Zastavnyi}, title = {Analog of {Schoenberg's} {Theorem} for $a${-Conditionally} {Negative} {Definite} {Matrix-Valued} {Kernels}}, journal = {Matemati\v{c}eskie zametki}, pages = {81--93}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/} }
TY - JOUR AU - V. P. Zastavnyi TI - Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels JO - Matematičeskie zametki PY - 2023 SP - 81 EP - 93 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/ LA - ru ID - MZM_2023_114_1_a5 ER -
V. P. Zastavnyi. Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/
[1] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:2 (1938), 811–841 | DOI | MR
[2] I. J. Schoenberg, “Metric spaces and positive definite functions”, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR
[3] C. Lowner, “On Schlicht-monotonic functions of higher order”, J. Math. Anal. Appl., 14 (1966), 320–325 | DOI | MR
[4] C. Dörr, M. Schlather, Charactterization Theorems for Pseudo-Variagrams, arXiv: pdf/2112.02595.pdf
[5] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Grad. Texts in Math., 100, Springer-Verlag, New York, 1984 | MR
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1986 | MR
[7] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR
[8] R. A. Horn, “On infinitely divisible matrices, kernels, and functions”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1967), 219–230 | DOI | MR
[9] C. Dörr, M. Schlather, Covariance Models for Multivariate Random Fields Resulting from Pseudo Cross-Variograms, arXiv: pdf/2207.02839v1.pdf
[10] C. Ma, “Vector random fields with second-order moments or second-order increments”, Stoch. Anal. Appl., 29:2 (2011), 197–215 | DOI | MR
[11] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1994 | MR
[12] C. Berg, J. Mateu, E. Porcu, “The Dagum family of isotropic correlation functions”, Bernoulli, 14:4 (2008), 1134–1149 | DOI | MR
[13] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, De Gruyter Stud. in Math., 37, De Gruyter, Berlin, 2010 | MR
[14] C. Berg, “Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity”, Positive Definite Functions: from Schoenberg to Space-Time Challenges, eds. J. Mateu, E. Porcu, Editorial Universitat Jaume I, 2008, 15–45
[15] R. Bhatia, T. Jain, “On some positive definite functions”, Positivity, 19:4 (2015), 903–910 | DOI | MR
[16] V. P. Zastavnyi, A. D. Manov, “O polozhitelnoi opredelennosti nekotorykh funktsii, svyazannykh s problemoi Shenberga”, Matem. zametki, 102:3 (2017), 355–368 | DOI | MR
[17] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1941 | MR
[18] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, GIFML, M., 1961 | MR
[19] Z. Sasvari, Multivariate Characteristic and Correlation Functions, De Gruyter Stud. in Math., 50, De Gruyter, Berlin, 2013 | MR
[20] V. A. Menegatto, C. P. Oliveira, “Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians”, Constr. Math. Anal., 4:4 (2021), 384–399 | DOI | MR
[21] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, I, Nauka, M., 1971 | MR