Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Schoenberg's classical 1938 theorem asserts that, given a function $\rho\colon G\times G\to\mathbb{C}$, the function $\exp(-t\rho)$ is a positive definite kernel on $G\times G$ for any $t>0$ if and only if the kernel $\rho$ is Hermitian and negative definite on $G\times G$. An analog of this theorem for matrices was essentially proved by C. Löwner in 1966. Recently (in 2021), C. Dörr and M. Schlather obtained an analog of Schoenberg's theorem for real matrix-valued functions $\rho(x)$, $x\in \mathbb{R}^d$. This analog refers to conditionally negative definite matrix-valued functions. In the present paper, $a$-conditionally negative definite matrix-valued kernels $\rho$ on $G\times G$ for which an analog of Schoenberg's theorem holds are introduced and studied. The following more general problem is also considered: for what functions $f$ and $g$ and matrix-valued kernels $\rho$ on $G\times G$ is the function $f(tg(\rho))$ a positive definite matrix-valued kernel on $G\times G$ for any $t>0$? Necessary conditions, sufficient conditions, and examples of such functions are given.
Keywords: positive definite matrix-valued kernel, conditionally negative definite matrix-valued kernel, completely monotone function, Bernstein function, Schoenberg's theorem.
@article{MZM_2023_114_1_a5,
     author = {V. P. Zastavnyi},
     title = {Analog of {Schoenberg's} {Theorem} for $a${-Conditionally} {Negative} {Definite} {Matrix-Valued} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels
JO  - Matematičeskie zametki
PY  - 2023
SP  - 81
EP  - 93
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/
LA  - ru
ID  - MZM_2023_114_1_a5
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels
%J Matematičeskie zametki
%D 2023
%P 81-93
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/
%G ru
%F MZM_2023_114_1_a5
V. P. Zastavnyi. Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a5/

[1] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:2 (1938), 811–841 | DOI | MR

[2] I. J. Schoenberg, “Metric spaces and positive definite functions”, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR

[3] C. Lowner, “On Schlicht-monotonic functions of higher order”, J. Math. Anal. Appl., 14 (1966), 320–325 | DOI | MR

[4] C. Dörr, M. Schlather, Charactterization Theorems for Pseudo-Variagrams, arXiv: pdf/2112.02595.pdf

[5] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Grad. Texts in Math., 100, Springer-Verlag, New York, 1984 | MR

[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1986 | MR

[7] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR

[8] R. A. Horn, “On infinitely divisible matrices, kernels, and functions”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1967), 219–230 | DOI | MR

[9] C. Dörr, M. Schlather, Covariance Models for Multivariate Random Fields Resulting from Pseudo Cross-Variograms, arXiv: pdf/2207.02839v1.pdf

[10] C. Ma, “Vector random fields with second-order moments or second-order increments”, Stoch. Anal. Appl., 29:2 (2011), 197–215 | DOI | MR

[11] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1994 | MR

[12] C. Berg, J. Mateu, E. Porcu, “The Dagum family of isotropic correlation functions”, Bernoulli, 14:4 (2008), 1134–1149 | DOI | MR

[13] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, De Gruyter Stud. in Math., 37, De Gruyter, Berlin, 2010 | MR

[14] C. Berg, “Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity”, Positive Definite Functions: from Schoenberg to Space-Time Challenges, eds. J. Mateu, E. Porcu, Editorial Universitat Jaume I, 2008, 15–45

[15] R. Bhatia, T. Jain, “On some positive definite functions”, Positivity, 19:4 (2015), 903–910 | DOI | MR

[16] V. P. Zastavnyi, A. D. Manov, “O polozhitelnoi opredelennosti nekotorykh funktsii, svyazannykh s problemoi Shenberga”, Matem. zametki, 102:3 (2017), 355–368 | DOI | MR

[17] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1941 | MR

[18] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, GIFML, M., 1961 | MR

[19] Z. Sasvari, Multivariate Characteristic and Correlation Functions, De Gruyter Stud. in Math., 50, De Gruyter, Berlin, 2013 | MR

[20] V. A. Menegatto, C. P. Oliveira, “Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians”, Constr. Math. Anal., 4:4 (2021), 384–399 | DOI | MR

[21] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, I, Nauka, M., 1971 | MR