Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 68-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions for a function $f$ to belong to the generalized Lipschitz classes $H^{m,\omega}_{q,\nu}$ and $h^{m,\omega}_{q,\nu}$ for fractional $m$ are given in terms of its $q$-Bessel–Fourier transform $\mathcal F_{q,\nu}(f)$. Dual results are considered as well. An analog of the Titchmarsh theorem for fractional-order differences is proved.
Keywords:
generalized Lipschitz class
Mots-clés : Fourier transform, $q$-Bessel–Fourier transform.
Mots-clés : Fourier transform, $q$-Bessel–Fourier transform.
@article{MZM_2023_114_1_a4,
author = {S. S. Volosivets and Yu. I. Krotova},
title = {Boas and {Titchmarsh} {Type} {Theorems} for {Generalized} {Lipschitz} {Classes} and $q${-Bessel} {Fourier} {Transform}},
journal = {Matemati\v{c}eskie zametki},
pages = {68--80},
publisher = {mathdoc},
volume = {114},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/}
}
TY - JOUR AU - S. S. Volosivets AU - Yu. I. Krotova TI - Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform JO - Matematičeskie zametki PY - 2023 SP - 68 EP - 80 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/ LA - ru ID - MZM_2023_114_1_a4 ER -
%0 Journal Article %A S. S. Volosivets %A Yu. I. Krotova %T Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform %J Matematičeskie zametki %D 2023 %P 68-80 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/ %G ru %F MZM_2023_114_1_a4
S. S. Volosivets; Yu. I. Krotova. Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 68-80. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/