Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 68-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for a function $f$ to belong to the generalized Lipschitz classes $H^{m,\omega}_{q,\nu}$ and $h^{m,\omega}_{q,\nu}$ for fractional $m$ are given in terms of its $q$-Bessel–Fourier transform $\mathcal F_{q,\nu}(f)$. Dual results are considered as well. An analog of the Titchmarsh theorem for fractional-order differences is proved.
Keywords: generalized Lipschitz class
Mots-clés : Fourier transform, $q$-Bessel–Fourier transform.
@article{MZM_2023_114_1_a4,
     author = {S. S. Volosivets and Yu. I. Krotova},
     title = {Boas and {Titchmarsh} {Type} {Theorems} for {Generalized} {Lipschitz} {Classes} and $q${-Bessel} {Fourier} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {68--80},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - Yu. I. Krotova
TI  - Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
JO  - Matematičeskie zametki
PY  - 2023
SP  - 68
EP  - 80
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/
LA  - ru
ID  - MZM_2023_114_1_a4
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A Yu. I. Krotova
%T Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
%J Matematičeskie zametki
%D 2023
%P 68-80
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/
%G ru
%F MZM_2023_114_1_a4
S. S. Volosivets; Yu. I. Krotova. Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 68-80. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/

[1] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Pure and Appl. Math., 40, Academic Press, New York–London, 1971 | MR

[2] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522 | MR | Zbl

[3] F. Móricz, “Absolutely convergent Fourier integrals and classical function spaces”, Arch. Math. (Basel), 91:1 (2008), 49–62 | DOI | MR

[4] S. S. Volosivets, “Fourier transforms and generalized Lipschitz classes in uniform metric”, J. Math. Anal. Appl., 383:2 (2011), 344–352 | DOI | MR

[5] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer-Verlag, New York, 1967 | MR

[6] F. Móricz, “Absolutely convergent Fourier series and function classes”, J. Math. Anal. Appl., 324:2 (2006), 1168–1177 | DOI | MR

[7] S. Tikhonov, “Smoothness conditions and Fourier series”, Math. Inequal. Appl., 10:2 (2007), 229–242 | MR

[8] E. M. Berkak, E. M. Loualid, R. Daher, “Boas-type theorems for the $q$-Bessel Fourier transform”, Anal. Math. Phys., 11:3 (2021) | MR

[9] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M.-L., 1948 | MR

[10] A. Achak, R. Daher, L. Dhaouadi, E. M. Loualid, “An analog of Titchmarsh's theorem for the $q$-Bessel transform”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 65:1 (2019), 1–13 | DOI | MR

[11] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Math. and its Appl., 35, Cambridge Univ. Press, Cambridge, 1990 | MR

[12] V. G. Kats, P. Chen, Kvantovyi analiz, Izd-vo MTsNMO, M., 2005 | MR

[13] T. H. Koornwinder, R. F. Swarttouw, “On $q$-analogues of the Fourier and Hankel transforms”, Trans. Amer. Math. Soc., 333:1 (1992), 445–461 | MR

[14] L. Dhaouadi, A. Fitouhi, J. El Kamel, “Inequalities in $q$-Fourier analysis”, JIPAM. J. Inequal. Pure Appl. Math., 7:5 (2006), 171 | MR

[15] L. Dhaouadi, “On the $q$-Bessel Fourier transform”, Bull. Math. Anal. Appl., 5:2 (2013), 42–60 | MR

[16] A. Fitouhi, L. Dhaouadi, “Positivity of the generalized translation associated with the $q$-Hankel transform”, Constr. Approx., 34:3 (2011), 435–472 | DOI | MR

[17] M. Izumi, S.-I. Izumi, “Lipschitz classes and Fourier coefficients”, J. Math. Mech., 18:9 (1969), 857–870 | MR