Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a4, author = {S. S. Volosivets and Yu. I. Krotova}, title = {Boas and {Titchmarsh} {Type} {Theorems} for {Generalized} {Lipschitz} {Classes} and $q${-Bessel} {Fourier} {Transform}}, journal = {Matemati\v{c}eskie zametki}, pages = {68--80}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/} }
TY - JOUR AU - S. S. Volosivets AU - Yu. I. Krotova TI - Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform JO - Matematičeskie zametki PY - 2023 SP - 68 EP - 80 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/ LA - ru ID - MZM_2023_114_1_a4 ER -
%0 Journal Article %A S. S. Volosivets %A Yu. I. Krotova %T Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform %J Matematičeskie zametki %D 2023 %P 68-80 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/ %G ru %F MZM_2023_114_1_a4
S. S. Volosivets; Yu. I. Krotova. Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 68-80. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a4/
[1] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Pure and Appl. Math., 40, Academic Press, New York–London, 1971 | MR
[2] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522 | MR | Zbl
[3] F. Móricz, “Absolutely convergent Fourier integrals and classical function spaces”, Arch. Math. (Basel), 91:1 (2008), 49–62 | DOI | MR
[4] S. S. Volosivets, “Fourier transforms and generalized Lipschitz classes in uniform metric”, J. Math. Anal. Appl., 383:2 (2011), 344–352 | DOI | MR
[5] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer-Verlag, New York, 1967 | MR
[6] F. Móricz, “Absolutely convergent Fourier series and function classes”, J. Math. Anal. Appl., 324:2 (2006), 1168–1177 | DOI | MR
[7] S. Tikhonov, “Smoothness conditions and Fourier series”, Math. Inequal. Appl., 10:2 (2007), 229–242 | MR
[8] E. M. Berkak, E. M. Loualid, R. Daher, “Boas-type theorems for the $q$-Bessel Fourier transform”, Anal. Math. Phys., 11:3 (2021) | MR
[9] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M.-L., 1948 | MR
[10] A. Achak, R. Daher, L. Dhaouadi, E. M. Loualid, “An analog of Titchmarsh's theorem for the $q$-Bessel transform”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 65:1 (2019), 1–13 | DOI | MR
[11] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Math. and its Appl., 35, Cambridge Univ. Press, Cambridge, 1990 | MR
[12] V. G. Kats, P. Chen, Kvantovyi analiz, Izd-vo MTsNMO, M., 2005 | MR
[13] T. H. Koornwinder, R. F. Swarttouw, “On $q$-analogues of the Fourier and Hankel transforms”, Trans. Amer. Math. Soc., 333:1 (1992), 445–461 | MR
[14] L. Dhaouadi, A. Fitouhi, J. El Kamel, “Inequalities in $q$-Fourier analysis”, JIPAM. J. Inequal. Pure Appl. Math., 7:5 (2006), 171 | MR
[15] L. Dhaouadi, “On the $q$-Bessel Fourier transform”, Bull. Math. Anal. Appl., 5:2 (2013), 42–60 | MR
[16] A. Fitouhi, L. Dhaouadi, “Positivity of the generalized translation associated with the $q$-Hankel transform”, Constr. Approx., 34:3 (2011), 435–472 | DOI | MR
[17] M. Izumi, S.-I. Izumi, “Lipschitz classes and Fourier coefficients”, J. Math. Mech., 18:9 (1969), 857–870 | MR