Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 57-67

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of the model of point vortices proposed by the German scientist Hermann Helmholtz. Necessary and sufficient conditions for the existence of infinitely many nonequivalent stationary configurations are found for a system consisting of two point vortices of intensity $\Gamma_1$ and an arbitrary number of point vortices of intensity $\Gamma_2$. A classification of such configurations is carried out. For the first time, a connection is discovered between the negative Diophantine Pell equation and stationary configurations of point vortices on the plane.
Mots-clés : point vortex
Keywords: infinite-dimensional configuration, stationary configuration, negative Pell equation.
@article{MZM_2023_114_1_a3,
     author = {A. Vishnevskaya and M. V. Demina},
     title = {Negative {Pell} {Equation} and {Stationary} {Configurations} of {Point} {Vortices} on the {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/}
}
TY  - JOUR
AU  - A. Vishnevskaya
AU  - M. V. Demina
TI  - Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
JO  - Matematičeskie zametki
PY  - 2023
SP  - 57
EP  - 67
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/
LA  - ru
ID  - MZM_2023_114_1_a3
ER  - 
%0 Journal Article
%A A. Vishnevskaya
%A M. V. Demina
%T Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
%J Matematičeskie zametki
%D 2023
%P 57-67
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/
%G ru
%F MZM_2023_114_1_a3
A. Vishnevskaya; M. V. Demina. Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/