Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of the model of point vortices proposed by the German scientist Hermann Helmholtz. Necessary and sufficient conditions for the existence of infinitely many nonequivalent stationary configurations are found for a system consisting of two point vortices of intensity $\Gamma_1$ and an arbitrary number of point vortices of intensity $\Gamma_2$. A classification of such configurations is carried out. For the first time, a connection is discovered between the negative Diophantine Pell equation and stationary configurations of point vortices on the plane.
Mots-clés : point vortex
Keywords: infinite-dimensional configuration, stationary configuration, negative Pell equation.
@article{MZM_2023_114_1_a3,
     author = {A. Vishnevskaya and M. V. Demina},
     title = {Negative {Pell} {Equation} and {Stationary} {Configurations} of {Point} {Vortices} on the {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/}
}
TY  - JOUR
AU  - A. Vishnevskaya
AU  - M. V. Demina
TI  - Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
JO  - Matematičeskie zametki
PY  - 2023
SP  - 57
EP  - 67
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/
LA  - ru
ID  - MZM_2023_114_1_a3
ER  - 
%0 Journal Article
%A A. Vishnevskaya
%A M. V. Demina
%T Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
%J Matematičeskie zametki
%D 2023
%P 57-67
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/
%G ru
%F MZM_2023_114_1_a3
A. Vishnevskaya; M. V. Demina. Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/

[1] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR

[2] H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda, D. L. Vainchtein, “Vortex crystals”, Advances in Applied Mechanics, 39 (2003), 1–79 | DOI

[3] H. Aref, “Relative equilibria of point vortices and the fundamental theorem of algebra”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467:2132 (2011), 2168–2184 | DOI | MR

[4] K. A. O'Neil, “Minimal polynomial systems for point vortex equilibria”, Phys. D, 219:1 (2006), 69–79 | DOI | MR

[5] M. V. Demina, N. A. Kudryashov, “Vortices and polynomials: non-uniqueness of the Adler-Moser polynomials for the Tkachenko equation”, J. Phys. A, 45:19 (2012) | DOI | MR

[6] Y. Tsai, “Bifurcation of point vortex equilibria: four-vortex translating configurations and five-vortex stationary configurations”, Nonlinearity, 33:12 (2020), 6564–6589 | DOI | MR

[7] V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy, A. Constantin, “A transformation between stationary point vortex equilibria”, Proc. A., 476:2240 (2020) | MR

[8] P. K. Newton, The $N$-Vortex Problem. Analytical Techniques, Appl. Math. Sciences, 145, Springer-Verlag, New York, 2001 | MR

[9] M. V. Demina, N. A. Kudryashov, “Point vortices and polynomials of the Sawada–Kotera and Kaup–Kupershmidt equations”, Regul. Chaotic Dyn., 16:6 (2011), 562–576 | DOI | MR

[10] V. K. Tkachenko, “O vikhrevykh reshetkakh”, ZhETF, 49:6 (1966), 1875–1883

[11] K. A. O'Neil, “Stationary configurations of point vortices”, Trans. Amer. Math. Soc., 302:2 (1987), 383–425 | DOI | MR

[12] M. V. Demina, N. A. Kudryashov, “Point vortices and classical orthogonal polynomials”, Regul. Chaotic Dyn., 17:5 (2012), 371–384 | DOI | MR | Zbl

[13] M. V. Demina, N. A. Kudryashov, “Rotation, collapse, and scattering of point vortices”, Theor. and Comp. Fluid Dynamics, 28:3 (2014), 357–368 | DOI

[14] Demina, M.V., Kudryashov, N.A., “Multi-particle dynamical systems and polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 351–366 | DOI | MR

[15] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg-de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR

[16] I. Loutsenko, “Equilibrium of charges and differential equations solved by polynomials”, J. Phys. A, 37:4 (2004), 1309–1321 | DOI | MR

[17] K. A. O'Neil, N. Cox-Steib, “Generalized Adler–Moser and Loutsenko polynomials for point vortex equilibria”, Regul. Chaotic Dyn., 19:5 (2014), 523–532 | DOI | MR | Zbl

[18] H. Aref, “Vortices and polynomials”, Fluid Dynam. Res., 39:1–3 (2007), 5–23 | DOI | MR

[19] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[20] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR