Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a3, author = {A. Vishnevskaya and M. V. Demina}, title = {Negative {Pell} {Equation} and {Stationary} {Configurations} of {Point} {Vortices} on the {Plane}}, journal = {Matemati\v{c}eskie zametki}, pages = {57--67}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/} }
TY - JOUR AU - A. Vishnevskaya AU - M. V. Demina TI - Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane JO - Matematičeskie zametki PY - 2023 SP - 57 EP - 67 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/ LA - ru ID - MZM_2023_114_1_a3 ER -
A. Vishnevskaya; M. V. Demina. Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a3/
[1] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR
[2] H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda, D. L. Vainchtein, “Vortex crystals”, Advances in Applied Mechanics, 39 (2003), 1–79 | DOI
[3] H. Aref, “Relative equilibria of point vortices and the fundamental theorem of algebra”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467:2132 (2011), 2168–2184 | DOI | MR
[4] K. A. O'Neil, “Minimal polynomial systems for point vortex equilibria”, Phys. D, 219:1 (2006), 69–79 | DOI | MR
[5] M. V. Demina, N. A. Kudryashov, “Vortices and polynomials: non-uniqueness of the Adler-Moser polynomials for the Tkachenko equation”, J. Phys. A, 45:19 (2012) | DOI | MR
[6] Y. Tsai, “Bifurcation of point vortex equilibria: four-vortex translating configurations and five-vortex stationary configurations”, Nonlinearity, 33:12 (2020), 6564–6589 | DOI | MR
[7] V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy, A. Constantin, “A transformation between stationary point vortex equilibria”, Proc. A., 476:2240 (2020) | MR
[8] P. K. Newton, The $N$-Vortex Problem. Analytical Techniques, Appl. Math. Sciences, 145, Springer-Verlag, New York, 2001 | MR
[9] M. V. Demina, N. A. Kudryashov, “Point vortices and polynomials of the Sawada–Kotera and Kaup–Kupershmidt equations”, Regul. Chaotic Dyn., 16:6 (2011), 562–576 | DOI | MR
[10] V. K. Tkachenko, “O vikhrevykh reshetkakh”, ZhETF, 49:6 (1966), 1875–1883
[11] K. A. O'Neil, “Stationary configurations of point vortices”, Trans. Amer. Math. Soc., 302:2 (1987), 383–425 | DOI | MR
[12] M. V. Demina, N. A. Kudryashov, “Point vortices and classical orthogonal polynomials”, Regul. Chaotic Dyn., 17:5 (2012), 371–384 | DOI | MR | Zbl
[13] M. V. Demina, N. A. Kudryashov, “Rotation, collapse, and scattering of point vortices”, Theor. and Comp. Fluid Dynamics, 28:3 (2014), 357–368 | DOI
[14] Demina, M.V., Kudryashov, N.A., “Multi-particle dynamical systems and polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 351–366 | DOI | MR
[15] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg-de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR
[16] I. Loutsenko, “Equilibrium of charges and differential equations solved by polynomials”, J. Phys. A, 37:4 (2004), 1309–1321 | DOI | MR
[17] K. A. O'Neil, N. Cox-Steib, “Generalized Adler–Moser and Loutsenko polynomials for point vortex equilibria”, Regul. Chaotic Dyn., 19:5 (2014), 523–532 | DOI | MR | Zbl
[18] H. Aref, “Vortices and polynomials”, Fluid Dynam. Res., 39:1–3 (2007), 5–23 | DOI | MR
[19] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR
[20] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR