A $T(P)$-Theorem for Zygmund Spaces on Domains
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 38-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose given a bounded Lipschitz domain $D\subset \mathbb{R}^d$, a higher-order modulus of continuity $\omega$, and a convolution Calderón–Zygmund operator $T$. The restricted operators $T_D$ that are bounded on the Zygmund space $\mathcal{C}_{\omega}(D)$ are described. The description is based on properties of the functions $T_D P$ for appropriate polynomials $P$ restricted to $D$.
Keywords: Zygmund space on a domain, $T(P)$-theorem, restricted Calderón–Zygmund operator.
@article{MZM_2023_114_1_a2,
     author = {A. V. Vasin and E. Doubtsov},
     title = {A $T(P)${-Theorem} for {Zygmund} {Spaces} on {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--56},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/}
}
TY  - JOUR
AU  - A. V. Vasin
AU  - E. Doubtsov
TI  - A $T(P)$-Theorem for Zygmund Spaces on Domains
JO  - Matematičeskie zametki
PY  - 2023
SP  - 38
EP  - 56
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/
LA  - ru
ID  - MZM_2023_114_1_a2
ER  - 
%0 Journal Article
%A A. V. Vasin
%A E. Doubtsov
%T A $T(P)$-Theorem for Zygmund Spaces on Domains
%J Matematičeskie zametki
%D 2023
%P 38-56
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/
%G ru
%F MZM_2023_114_1_a2
A. V. Vasin; E. Doubtsov. A $T(P)$-Theorem for Zygmund Spaces on Domains. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/