Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a2, author = {A. V. Vasin and E. Doubtsov}, title = {A $T(P)${-Theorem} for {Zygmund} {Spaces} on {Domains}}, journal = {Matemati\v{c}eskie zametki}, pages = {38--56}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/} }
A. V. Vasin; E. Doubtsov. A $T(P)$-Theorem for Zygmund Spaces on Domains. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/
[1] S. Janson, “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47:4 (1980), 959–982 | DOI | MR
[2] S. Campanato, “Proprietà di hölderianità di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175–188 | MR
[3] N. G. Meyers, “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR
[4] S. Kislyakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings, and Singular Integrals, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 74, Birkhäuser/Springer, Basel, 2013 | MR
[5] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderón–Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl. (9), 91:4 (2009), 402–431 | DOI | MR
[6] D. S. Anikonov, “Ob ogranichennosti singulyarnogo integralnogo operatora v prostranstve $C^\alpha(\overline G)$”, Matem. sb., 104 (146):4 (12) (1977), 515–534 | MR | Zbl
[7] J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga, J. L. Torrea, “A $T1$ criterion for Hermite–Calderón–Zygmund operators on the $BMO_H(\mathbb{R}^n)$ space and applications”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12:1 (2013), 157–187 | MR
[8] A. V. Vasin, “A $T1$ theorem and Calderón–Zygmund operators in Campanato spaces on domains”, Math. Nachr., 292:6 (2019), 1392–1407 | DOI | MR
[9] X. Tolsa, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2), 162:3 (2005), 1243–1304 | DOI | MR
[10] M. Prats, X. Tolsa, “A $T(P)$ theorem for Sobolev spaces on domains”, J. Funct. Anal., 268:10 (2015), 2946–2989 | DOI | MR
[11] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in $\mathbf R^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | MR
[12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR
[13] P. W. Jones, “Extension theorems for BMO”, Indiana Univ. Math. J., 29:1 (1980), 41–66 | DOI | MR
[14] T. Hansson, “On Hardy spaces in complex ellipsoids”, Ann. Inst. Fourier (Grenoble), 49:5 (1999), 1477–1501 | DOI | MR
[15] E. Doubtsov, A. V. Vasin, “Restricted Beurling transforms on Campanato spaces”, Complex Var. Elliptic Equ., 62:3 (2017), 333–346 | DOI | MR
[16] T. Sjödin, “On properties of functions with conditions on their mean oscillation over cubes”, Ark. Mat., 20:2 (1982), 275–291 | DOI | MR