A $T(P)$-Theorem for Zygmund Spaces on Domains
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 38-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose given a bounded Lipschitz domain $D\subset \mathbb{R}^d$, a higher-order modulus of continuity $\omega$, and a convolution Calderón–Zygmund operator $T$. The restricted operators $T_D$ that are bounded on the Zygmund space $\mathcal{C}_{\omega}(D)$ are described. The description is based on properties of the functions $T_D P$ for appropriate polynomials $P$ restricted to $D$.
Keywords: Zygmund space on a domain, $T(P)$-theorem, restricted Calderón–Zygmund operator.
@article{MZM_2023_114_1_a2,
     author = {A. V. Vasin and E. Doubtsov},
     title = {A $T(P)${-Theorem} for {Zygmund} {Spaces} on {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--56},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/}
}
TY  - JOUR
AU  - A. V. Vasin
AU  - E. Doubtsov
TI  - A $T(P)$-Theorem for Zygmund Spaces on Domains
JO  - Matematičeskie zametki
PY  - 2023
SP  - 38
EP  - 56
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/
LA  - ru
ID  - MZM_2023_114_1_a2
ER  - 
%0 Journal Article
%A A. V. Vasin
%A E. Doubtsov
%T A $T(P)$-Theorem for Zygmund Spaces on Domains
%J Matematičeskie zametki
%D 2023
%P 38-56
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/
%G ru
%F MZM_2023_114_1_a2
A. V. Vasin; E. Doubtsov. A $T(P)$-Theorem for Zygmund Spaces on Domains. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a2/

[1] S. Janson, “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47:4 (1980), 959–982 | DOI | MR

[2] S. Campanato, “Proprietà di hölderianità di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175–188 | MR

[3] N. G. Meyers, “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR

[4] S. Kislyakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings, and Singular Integrals, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 74, Birkhäuser/Springer, Basel, 2013 | MR

[5] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderón–Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl. (9), 91:4 (2009), 402–431 | DOI | MR

[6] D. S. Anikonov, “Ob ogranichennosti singulyarnogo integralnogo operatora v prostranstve $C^\alpha(\overline G)$”, Matem. sb., 104 (146):4 (12) (1977), 515–534 | MR | Zbl

[7] J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga, J. L. Torrea, “A $T1$ criterion for Hermite–Calderón–Zygmund operators on the $BMO_H(\mathbb{R}^n)$ space and applications”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12:1 (2013), 157–187 | MR

[8] A. V. Vasin, “A $T1$ theorem and Calderón–Zygmund operators in Campanato spaces on domains”, Math. Nachr., 292:6 (2019), 1392–1407 | DOI | MR

[9] X. Tolsa, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2), 162:3 (2005), 1243–1304 | DOI | MR

[10] M. Prats, X. Tolsa, “A $T(P)$ theorem for Sobolev spaces on domains”, J. Funct. Anal., 268:10 (2015), 2946–2989 | DOI | MR

[11] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in $\mathbf R^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | MR

[12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR

[13] P. W. Jones, “Extension theorems for BMO”, Indiana Univ. Math. J., 29:1 (1980), 41–66 | DOI | MR

[14] T. Hansson, “On Hardy spaces in complex ellipsoids”, Ann. Inst. Fourier (Grenoble), 49:5 (1999), 1477–1501 | DOI | MR

[15] E. Doubtsov, A. V. Vasin, “Restricted Beurling transforms on Campanato spaces”, Complex Var. Elliptic Equ., 62:3 (2017), 333–346 | DOI | MR

[16] T. Sjödin, “On properties of functions with conditions on their mean oscillation over cubes”, Ark. Mat., 20:2 (1982), 275–291 | DOI | MR