Partial Integral Operators on Banach--Kantorovich Spaces
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 18-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study partial integral operators on Banach–Kantorovich spaces over a ring of measurable functions. We obtain a decomposition of the cyclic modular spectrum of a bounded modular linear operator on a Banach–Kantorovich space in the form of a measurable bundle of the spectrum of bounded operators on Banach spaces. The classical Banach spaces with mixed norm are endowed with the structure of Banach–Kantorovich modules. We use such representations to show that every partial integral operator on a space with a mixed norm can be represented as a measurable bundle of integral operators. In particular, we show the cyclic compactness of such operators and, as an application, prove the Fredholm $\nabla$-alternative. We also give an example of a partial integral operator with a nonempty cyclically modular discrete spectrum, while its modular discrete spectrum is an empty set.
Keywords: partial integral operator, measurable bundle of integral operators, cyclically compact operator, modular spectrum.
@article{MZM_2023_114_1_a1,
     author = {A. D. Arziev and K. K. Kudaybergenov and P. R. Oryinbaev and A. K. Tanirbergen},
     title = {Partial {Integral} {Operators} on {Banach--Kantorovich} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--37},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/}
}
TY  - JOUR
AU  - A. D. Arziev
AU  - K. K. Kudaybergenov
AU  - P. R. Oryinbaev
AU  - A. K. Tanirbergen
TI  - Partial Integral Operators on Banach--Kantorovich Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 18
EP  - 37
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/
LA  - ru
ID  - MZM_2023_114_1_a1
ER  - 
%0 Journal Article
%A A. D. Arziev
%A K. K. Kudaybergenov
%A P. R. Oryinbaev
%A A. K. Tanirbergen
%T Partial Integral Operators on Banach--Kantorovich Spaces
%J Matematičeskie zametki
%D 2023
%P 18-37
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/
%G ru
%F MZM_2023_114_1_a1
A. D. Arziev; K. K. Kudaybergenov; P. R. Oryinbaev; A. K. Tanirbergen. Partial Integral Operators on Banach--Kantorovich Spaces. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 18-37. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/

[1] A. E. Gutman, “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. in-ta matem., 29, Novosibirsk, 1995, 63–211 | MR

[2] I. G. Ganiev, “Opisanie ogranichennykh operatorov v prostranstvakh Banakha–Kantorovicha”, Aktualnye problemy prikladnoi i teoreticheskoi matematiki, Samarkand, 1997, 3–4

[3] A. G. Kusraev, “Bulevoznachnyi analiz dvoistvennosti rasshirennykh modulei”, Dokl. AN SSSR, 267:5 (1982), 1049–1052 | MR | Zbl

[4] A. G. Kusraev, Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985 | MR

[5] A. G. Kusraev, Mazhoriruemye operatory, Nauka, M., 2003 | MR

[6] I. G. Ganiev, K. K. Kudaybergenov, “Measurable bundles of compact operators”, Methods Funct. Anal. Topology, 7:4 (2001), 1–5 | MR

[7] K. Kudaybergenov, F. Mukhamedov, “Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations”, Acta Math. Hungar., 149:2 (2016), 297–305 | DOI | MR

[8] S. Albeverio, Sh. Alimov, “On some integral equations in Hilbert space with an application to the theory of elasticity”, Integral Equations Operator Theory, 55:2 (2006), 153–168 | DOI | MR

[9] J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, New York, Marcel Dekker, 2000 | MR

[10] A. S. Kalitvin, V. A. Kalitvin, “Lineinye operatory i uravneniya s chastnymi integralami”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65 (3), Rossiiskii universitet druzhby narodov, M., 2019, 390–433 | DOI | MR

[11] J. M. Appell, I. A. Eletskikh, A. S. Kalitvin, “A note on the Fredholm property of partial integral equations of Romanovskij type”, J. Integral Equations Appl., 16:1 (2004), 25–32 | MR

[12] V. Romanovsky, “Sur une classe d'équations intégrales linéaires”, Acta Math., 59:1 (1932), 99–208 | DOI | MR

[13] K. K. Kudaybergenov, A. D. Arziev, “The spectrum of an element in a Banach–Kantorovich algebra over a ring of measurable functions”, Adv. Oper. Theory, 7:1 (2022), 2–15 | MR

[14] Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavk. matem. zhurn., 23:3 (2021), 80–90 | DOI | MR

[15] L. V. Kantorovich, “On a class of functional equations”, Dokl. Akad. Nauk SSSR, 4:5 (1936), 211–216

[16] M. A. Pliev, S. Fan, “Uzkie ortogonalno additivnye operatory v reshetochno-normirovannykh prostranstvakh”, Sib. matem. zhurn., 58:1 (2017), 174–184 | DOI | MR

[17] N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR

[18] A. Aydin, E. Yu. Emelyanov, N. Erkursun Ozcan, M. A. A. Marabeh, “Compact-like operators in lattice-normed spaces”, Indag. Math. (N.S.), 29:2 (2018), 633–656 | DOI | MR

[19] N. Dzhusoeva, M. S. Moslehian, M. Pliev, M. Popov, “Operators taking values in Lebesgue–Bochner spaces”, Proc. Amer. Math. Soc., 151:7 | DOI

[20] M. A. Pliev, F. Polat, M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74:2 (2019), 19 | MR

[21] M. Pliev, F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces”, J. Math. Anal. Appl., 500:2 (2021), 124594 | DOI | MR

[22] V. I. Levin, Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR

[23] I. G. Ganiev, K. K. Kudaibergenov, “Teorema Banakha ob obratnom operatore v prostranstvakh Banakha–Kantorovicha”, Vladikavk. matem. zhurn., 6:3 (2004), 21–25 | MR | Zbl

[24] I. G. Ganiev, K. K. Kudaibergenov, “Konechnomernye moduli nad koltsom izmerimykh funktsii”, Uzb. matem. zhurn., 2004, no. 4, 3–9 | MR

[25] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR

[26] V. B. Korotkov, Integralnye operatory, Nauka, M., 1985 | MR

[27] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991 | MR

[28] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York–London, 1980 | MR