Partial Integral Operators on Banach--Kantorovich Spaces
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 18-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study partial integral operators on Banach–Kantorovich spaces over a ring of measurable functions. We obtain a decomposition of the cyclic modular spectrum of a bounded modular linear operator on a Banach–Kantorovich space in the form of a measurable bundle of the spectrum of bounded operators on Banach spaces. The classical Banach spaces with mixed norm are endowed with the structure of Banach–Kantorovich modules. We use such representations to show that every partial integral operator on a space with a mixed norm can be represented as a measurable bundle of integral operators. In particular, we show the cyclic compactness of such operators and, as an application, prove the Fredholm $\nabla$-alternative. We also give an example of a partial integral operator with a nonempty cyclically modular discrete spectrum, while its modular discrete spectrum is an empty set.
Keywords: partial integral operator, measurable bundle of integral operators, cyclically compact operator, modular spectrum.
@article{MZM_2023_114_1_a1,
     author = {A. D. Arziev and K. K. Kudaybergenov and P. R. Oryinbaev and A. K. Tanirbergen},
     title = {Partial {Integral} {Operators} on {Banach--Kantorovich} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--37},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/}
}
TY  - JOUR
AU  - A. D. Arziev
AU  - K. K. Kudaybergenov
AU  - P. R. Oryinbaev
AU  - A. K. Tanirbergen
TI  - Partial Integral Operators on Banach--Kantorovich Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 18
EP  - 37
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/
LA  - ru
ID  - MZM_2023_114_1_a1
ER  - 
%0 Journal Article
%A A. D. Arziev
%A K. K. Kudaybergenov
%A P. R. Oryinbaev
%A A. K. Tanirbergen
%T Partial Integral Operators on Banach--Kantorovich Spaces
%J Matematičeskie zametki
%D 2023
%P 18-37
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/
%G ru
%F MZM_2023_114_1_a1
A. D. Arziev; K. K. Kudaybergenov; P. R. Oryinbaev; A. K. Tanirbergen. Partial Integral Operators on Banach--Kantorovich Spaces. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 18-37. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/