Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a1, author = {A. D. Arziev and K. K. Kudaybergenov and P. R. Oryinbaev and A. K. Tanirbergen}, title = {Partial {Integral} {Operators} on {Banach--Kantorovich} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {18--37}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/} }
TY - JOUR AU - A. D. Arziev AU - K. K. Kudaybergenov AU - P. R. Oryinbaev AU - A. K. Tanirbergen TI - Partial Integral Operators on Banach--Kantorovich Spaces JO - Matematičeskie zametki PY - 2023 SP - 18 EP - 37 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/ LA - ru ID - MZM_2023_114_1_a1 ER -
%0 Journal Article %A A. D. Arziev %A K. K. Kudaybergenov %A P. R. Oryinbaev %A A. K. Tanirbergen %T Partial Integral Operators on Banach--Kantorovich Spaces %J Matematičeskie zametki %D 2023 %P 18-37 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/ %G ru %F MZM_2023_114_1_a1
A. D. Arziev; K. K. Kudaybergenov; P. R. Oryinbaev; A. K. Tanirbergen. Partial Integral Operators on Banach--Kantorovich Spaces. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 18-37. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a1/
[1] A. E. Gutman, “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. in-ta matem., 29, Novosibirsk, 1995, 63–211 | MR
[2] I. G. Ganiev, “Opisanie ogranichennykh operatorov v prostranstvakh Banakha–Kantorovicha”, Aktualnye problemy prikladnoi i teoreticheskoi matematiki, Samarkand, 1997, 3–4
[3] A. G. Kusraev, “Bulevoznachnyi analiz dvoistvennosti rasshirennykh modulei”, Dokl. AN SSSR, 267:5 (1982), 1049–1052 | MR | Zbl
[4] A. G. Kusraev, Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985 | MR
[5] A. G. Kusraev, Mazhoriruemye operatory, Nauka, M., 2003 | MR
[6] I. G. Ganiev, K. K. Kudaybergenov, “Measurable bundles of compact operators”, Methods Funct. Anal. Topology, 7:4 (2001), 1–5 | MR
[7] K. Kudaybergenov, F. Mukhamedov, “Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations”, Acta Math. Hungar., 149:2 (2016), 297–305 | DOI | MR
[8] S. Albeverio, Sh. Alimov, “On some integral equations in Hilbert space with an application to the theory of elasticity”, Integral Equations Operator Theory, 55:2 (2006), 153–168 | DOI | MR
[9] J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, New York, Marcel Dekker, 2000 | MR
[10] A. S. Kalitvin, V. A. Kalitvin, “Lineinye operatory i uravneniya s chastnymi integralami”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65 (3), Rossiiskii universitet druzhby narodov, M., 2019, 390–433 | DOI | MR
[11] J. M. Appell, I. A. Eletskikh, A. S. Kalitvin, “A note on the Fredholm property of partial integral equations of Romanovskij type”, J. Integral Equations Appl., 16:1 (2004), 25–32 | MR
[12] V. Romanovsky, “Sur une classe d'équations intégrales linéaires”, Acta Math., 59:1 (1932), 99–208 | DOI | MR
[13] K. K. Kudaybergenov, A. D. Arziev, “The spectrum of an element in a Banach–Kantorovich algebra over a ring of measurable functions”, Adv. Oper. Theory, 7:1 (2022), 2–15 | MR
[14] Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavk. matem. zhurn., 23:3 (2021), 80–90 | DOI | MR
[15] L. V. Kantorovich, “On a class of functional equations”, Dokl. Akad. Nauk SSSR, 4:5 (1936), 211–216
[16] M. A. Pliev, S. Fan, “Uzkie ortogonalno additivnye operatory v reshetochno-normirovannykh prostranstvakh”, Sib. matem. zhurn., 58:1 (2017), 174–184 | DOI | MR
[17] N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR
[18] A. Aydin, E. Yu. Emelyanov, N. Erkursun Ozcan, M. A. A. Marabeh, “Compact-like operators in lattice-normed spaces”, Indag. Math. (N.S.), 29:2 (2018), 633–656 | DOI | MR
[19] N. Dzhusoeva, M. S. Moslehian, M. Pliev, M. Popov, “Operators taking values in Lebesgue–Bochner spaces”, Proc. Amer. Math. Soc., 151:7 | DOI
[20] M. A. Pliev, F. Polat, M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74:2 (2019), 19 | MR
[21] M. Pliev, F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces”, J. Math. Anal. Appl., 500:2 (2021), 124594 | DOI | MR
[22] V. I. Levin, Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR
[23] I. G. Ganiev, K. K. Kudaibergenov, “Teorema Banakha ob obratnom operatore v prostranstvakh Banakha–Kantorovicha”, Vladikavk. matem. zhurn., 6:3 (2004), 21–25 | MR | Zbl
[24] I. G. Ganiev, K. K. Kudaibergenov, “Konechnomernye moduli nad koltsom izmerimykh funktsii”, Uzb. matem. zhurn., 2004, no. 4, 3–9 | MR
[25] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR
[26] V. B. Korotkov, Integralnye operatory, Nauka, M., 1985 | MR
[27] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991 | MR
[28] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York–London, 1980 | MR