Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 827-835

Voir la notice de l'article provenant de la source Math-Net.Ru

New distortion theorems are proved for holomorphic univalent functions bounded in a circular annulus and preserving one of its boundary components. In particular, inequalities including the Schwarzian derivative at a boundary point of the annulus are established. All results follow from the properties of the conformal capacity of condensers and symmetrization.
Keywords: univalent function, angular derivative, Schwarzian derivative, condenser capacity, symmetrization.
@article{MZM_2023_113_6_a3,
     author = {V. N. Dubinin},
     title = {Boundary {Distortion} and the {Schwarzian} {Derivative} of a {Univalent} {Function} in a {Circular} {Annulus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--835},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
JO  - Matematičeskie zametki
PY  - 2023
SP  - 827
EP  - 835
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/
LA  - ru
ID  - MZM_2023_113_6_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
%J Matematičeskie zametki
%D 2023
%P 827-835
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/
%G ru
%F MZM_2023_113_6_a3
V. N. Dubinin. Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 827-835. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/