Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 827-835.

Voir la notice de l'article provenant de la source Math-Net.Ru

New distortion theorems are proved for holomorphic univalent functions bounded in a circular annulus and preserving one of its boundary components. In particular, inequalities including the Schwarzian derivative at a boundary point of the annulus are established. All results follow from the properties of the conformal capacity of condensers and symmetrization.
Keywords: univalent function, angular derivative, Schwarzian derivative, condenser capacity, symmetrization.
@article{MZM_2023_113_6_a3,
     author = {V. N. Dubinin},
     title = {Boundary {Distortion} and the {Schwarzian} {Derivative} of a {Univalent} {Function} in a {Circular} {Annulus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--835},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
JO  - Matematičeskie zametki
PY  - 2023
SP  - 827
EP  - 835
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/
LA  - ru
ID  - MZM_2023_113_6_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus
%J Matematičeskie zametki
%D 2023
%P 827-835
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/
%G ru
%F MZM_2023_113_6_a3
V. N. Dubinin. Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 827-835. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl

[3] A. Yu. Solynin, “Granichnoe iskazhenie i izmenenie modulya pri rasshirenii dvusvyaznoi oblasti”, Issledovaniya po lineinym operatoram i teorii funktsii. 20, Zap. nauchn. sem. POMI, 201, Nauka, SPb., 1992, 157–163 | MR | Zbl

[4] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. sem. POMI, 204, Nauka, SPb., 1993, 115–142 | MR | Zbl

[5] A. Yu. Solynin, “Razbieniya na nenalegayuschie oblasti i ekstremalnye svoistva odnolistnykh otobrazhenii”, Analiticheskaya teoriya chisel i teoriya funktsii. 12, Zap. nauchn. sem. POMI, 212, Nauka, SPb., 1994, 139–163 | MR | Zbl

[6] V. N. Dubinin, E. G. Prilepkina, “Teoremy iskazheniya dlya funktsii, meromorfnykh i odnolistnykh v krugovom koltse”, Sib. matem. zhurn., 51:2 (2010), 285–302 | MR

[7] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR

[8] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR

[9] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR

[10] V. N. Dubinin, V. Yu. Kim, “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 22, Zap. nauchn. sem. POMI, 350, POMI, SPb., 2007, 26–39

[11] Ch. Pommerenke, A. Vasil'ev, “On bounded univalent functions and the angular derivative”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 54 (2000), 79–106 | MR

[12] V. N. Dubinin, “K neravenstvu Shvartsa na granitse dlya regulyarnykh v kruge funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 18, Zap. nauchn. sem. POMI, 286, POMI, SPb., 2002, 74–84 | MR | Zbl

[13] M. D. Contreras, S. Diaz-Madrigal, A. Vasilév, “Digons and angular derivatives of analytic self-maps of the unit disk”, Complex Var. Elliptic Equ., 52:8 (2007), 685–691 | DOI | MR

[14] V. N. Dubinin, V. Yu. Kim, “Obobschennye kondensatory i teoremy o granichnom iskazhenii pri konformnom otobrazhenii”, Dalnevost. matem. zhurn., 13:2 (2013), 196–208 | MR

[15] V. N. Dubinin, “O proizvedenii vnutrennikh radiusov “chastichno nenalegayuschikh” oblastei”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 24–31

[16] D. M. Burns, S. G. Krantz, “Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary”, J. Amer. Math. Soc., 7:3 (1994), 661–676 | DOI | MR

[17] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl, 45:2 (2001), 151–165 | DOI | MR

[18] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105:1 (2008), 19–42 | DOI | MR

[19] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Matem. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl

[20] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k kn.: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953, 234–301