Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_6_a3, author = {V. N. Dubinin}, title = {Boundary {Distortion} and the {Schwarzian} {Derivative} of a {Univalent} {Function} in a {Circular} {Annulus}}, journal = {Matemati\v{c}eskie zametki}, pages = {827--835}, publisher = {mathdoc}, volume = {113}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/} }
TY - JOUR AU - V. N. Dubinin TI - Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus JO - Matematičeskie zametki PY - 2023 SP - 827 EP - 835 VL - 113 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/ LA - ru ID - MZM_2023_113_6_a3 ER -
V. N. Dubinin. Boundary Distortion and the Schwarzian Derivative of a Univalent Function in a Circular Annulus. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 827-835. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a3/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl
[3] A. Yu. Solynin, “Granichnoe iskazhenie i izmenenie modulya pri rasshirenii dvusvyaznoi oblasti”, Issledovaniya po lineinym operatoram i teorii funktsii. 20, Zap. nauchn. sem. POMI, 201, Nauka, SPb., 1992, 157–163 | MR | Zbl
[4] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. sem. POMI, 204, Nauka, SPb., 1993, 115–142 | MR | Zbl
[5] A. Yu. Solynin, “Razbieniya na nenalegayuschie oblasti i ekstremalnye svoistva odnolistnykh otobrazhenii”, Analiticheskaya teoriya chisel i teoriya funktsii. 12, Zap. nauchn. sem. POMI, 212, Nauka, SPb., 1994, 139–163 | MR | Zbl
[6] V. N. Dubinin, E. G. Prilepkina, “Teoremy iskazheniya dlya funktsii, meromorfnykh i odnolistnykh v krugovom koltse”, Sib. matem. zhurn., 51:2 (2010), 285–302 | MR
[7] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR
[8] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR
[9] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR
[10] V. N. Dubinin, V. Yu. Kim, “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 22, Zap. nauchn. sem. POMI, 350, POMI, SPb., 2007, 26–39
[11] Ch. Pommerenke, A. Vasil'ev, “On bounded univalent functions and the angular derivative”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 54 (2000), 79–106 | MR
[12] V. N. Dubinin, “K neravenstvu Shvartsa na granitse dlya regulyarnykh v kruge funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 18, Zap. nauchn. sem. POMI, 286, POMI, SPb., 2002, 74–84 | MR | Zbl
[13] M. D. Contreras, S. Diaz-Madrigal, A. Vasilév, “Digons and angular derivatives of analytic self-maps of the unit disk”, Complex Var. Elliptic Equ., 52:8 (2007), 685–691 | DOI | MR
[14] V. N. Dubinin, V. Yu. Kim, “Obobschennye kondensatory i teoremy o granichnom iskazhenii pri konformnom otobrazhenii”, Dalnevost. matem. zhurn., 13:2 (2013), 196–208 | MR
[15] V. N. Dubinin, “O proizvedenii vnutrennikh radiusov “chastichno nenalegayuschikh” oblastei”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 24–31
[16] D. M. Burns, S. G. Krantz, “Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary”, J. Amer. Math. Soc., 7:3 (1994), 661–676 | DOI | MR
[17] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl, 45:2 (2001), 151–165 | DOI | MR
[18] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105:1 (2008), 19–42 | DOI | MR
[19] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Matem. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl
[20] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k kn.: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953, 234–301