Implicit Function Theorems for Continuous Mappings
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 793-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

Local and nonlocal implicit function theorems are obtained for closed mappings with a parameter from one Asplund space to another. These theorems are formulated in terms of the regular coderivative of a mapping at a point. The obtained results are applied to study properties of the minimum function for a constrained extremum problem with equality-type constraints and with a parameter. Sufficient conditions for the upper semicontinuity of the minimum function for a given parameter value are obtained.
Keywords: implicit function, regular coderivative, minimum function.
@article{MZM_2023_113_6_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy and B. Sh. Mordukhovich},
     title = {Implicit {Function} {Theorems} for {Continuous} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {793--806},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
AU  - B. Sh. Mordukhovich
TI  - Implicit Function Theorems for Continuous Mappings
JO  - Matematičeskie zametki
PY  - 2023
SP  - 793
EP  - 806
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a0/
LA  - ru
ID  - MZM_2023_113_6_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%A B. Sh. Mordukhovich
%T Implicit Function Theorems for Continuous Mappings
%J Matematičeskie zametki
%D 2023
%P 793-806
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a0/
%G ru
%F MZM_2023_113_6_a0
A. V. Arutyunov; S. E. Zhukovskiy; B. Sh. Mordukhovich. Implicit Function Theorems for Continuous Mappings. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 793-806. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a0/

[1] Zh. Dedonne, Osnovy sovremennogo analiza, Mir, M., 1964 | MR

[2] V. A. Zorich, Matematicheskii analiz. Chast I, MTsNMO, M., 2012 | MR

[3] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR

[4] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR

[5] V. M. Tikhomirov, “Teorema Lyusternika o kasatelnom prostranstve i nekotorye ee modifikatsii”, Optimalnoe upravlenie. Matem. vopr. upravleniya proizvodstvom. 7, Iz-vo MGU, M., 1977, 22–30

[6] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[7] B. H. Pourciau, “Analysis and optimization of Lipschitz continuous mappings”, J. Optim. Theory Appl., 22:3 (1977), 311–351 | DOI | MR

[8] I. G. Tsarkov, “O globalnom suschestvovanii neyavnoi funktsii”, Matem. sb., 184:7 (1993), 79–116 | MR | Zbl

[9] A. V. Arutyunov, S. E. Zhukovskii, “Globalnaya i polulokalnaya teoremy o neyavnoi i ob obratnoi funktsii v banakhovykh prostranstvakh”, Matem. sb., 213:1 (2022), 3–45 | DOI | MR

[10] W. C. Rheinboldt, “Local mapping relations and global implicit function theorems”, Trans. Amer. Math. Soc., 138 (1969), 183–198 | DOI | MR

[11] B. H. Pourciau, “Hadamard's theorem for locally Lipschitzian maps”, J. Math. Anal. Appl, 85:1 (1982), 279–285 | DOI | MR

[12] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000 | MR

[13] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications, Springer-Verlag, Berlin, 2006 | MR

[14] B. S. Mordukhovich, Variational Analysis and Applications, Springer-Verlag, Cham, 2018 | MR

[15] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998 | MR

[16] B. S. Mordukhovich, “Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions”, Trans. Amer. Math. Soc., 340:1 (1993), 1–35 | DOI | MR

[17] A. V. Arutyunov, S. E. Zhukovskii, “Suschestvovanie obratnykh otobrazhenii i ikh svoistva”, Differentsialnye uravneniya i topologiya. II, Trudy MIAN, 271, Nauka, M., 2010, 18–28 | MR | Zbl

[18] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM J. Optim., 25:2 (2015), 807–828 | DOI | MR

[19] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | DOI | MR

[20] A. V. Arutyunov, “Uslovie Karisti i suschestvovanie minimuma ogranichennoi snizu funktsii v metricheskom prostranstve. Prilozheniya k teorii tochek sovpadeniya”, Optimalnoe upravlenie, Trudy MIAN, 291, Nauka, M., 2015, 30–44 | DOI

[21] M. J. Fabian, D. Preiss, “A generalization of the interior mapping theorem of Clarke and Pourciau”, Comment. Math. Univ. Carolin., 28:2 (1987), 311–324 | MR