Uniform Convergence on Subspaces in von Neumann Ergodic
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 713-730
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and the complete description of all such subspaces is obtained. Uniform convergence on the whole space takes place only in the trivial cases, which explains the interest in uniform convergence precisely on subspaces. In addition, by the way, old estimates of the rates of convergence in the von Neumann ergodic theorem for measure-preserving mappings are generalized and refined.
Keywords:
von Neumann ergodic theorem , rate of convergence in ergodic theorems,
power-law uniform convergence.
@article{MZM_2023_113_5_a6,
author = {A. G. Kachurovskii and I. V. Podvigin and A. J. Khakimbaev},
title = {Uniform {Convergence} on {Subspaces} in von {Neumann} {Ergodic}},
journal = {Matemati\v{c}eskie zametki},
pages = {713--730},
publisher = {mathdoc},
volume = {113},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/}
}
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin AU - A. J. Khakimbaev TI - Uniform Convergence on Subspaces in von Neumann Ergodic JO - Matematičeskie zametki PY - 2023 SP - 713 EP - 730 VL - 113 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/ LA - ru ID - MZM_2023_113_5_a6 ER -
A. G. Kachurovskii; I. V. Podvigin; A. J. Khakimbaev. Uniform Convergence on Subspaces in von Neumann Ergodic. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 713-730. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/