Uniform Convergence on Subspaces in von Neumann Ergodic
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 713-730

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and the complete description of all such subspaces is obtained. Uniform convergence on the whole space takes place only in the trivial cases, which explains the interest in uniform convergence precisely on subspaces. In addition, by the way, old estimates of the rates of convergence in the von Neumann ergodic theorem for measure-preserving mappings are generalized and refined.
Keywords: von Neumann ergodic theorem , rate of convergence in ergodic theorems, power-law uniform convergence.
@article{MZM_2023_113_5_a6,
     author = {A. G. Kachurovskii and I. V. Podvigin and A. J. Khakimbaev},
     title = {Uniform {Convergence} on {Subspaces} in von {Neumann} {Ergodic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--730},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - A. J. Khakimbaev
TI  - Uniform Convergence on Subspaces in von Neumann Ergodic
JO  - Matematičeskie zametki
PY  - 2023
SP  - 713
EP  - 730
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/
LA  - ru
ID  - MZM_2023_113_5_a6
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A A. J. Khakimbaev
%T Uniform Convergence on Subspaces in von Neumann Ergodic
%J Matematičeskie zametki
%D 2023
%P 713-730
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/
%G ru
%F MZM_2023_113_5_a6
A. G. Kachurovskii; I. V. Podvigin; A. J. Khakimbaev. Uniform Convergence on Subspaces in von Neumann Ergodic. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 713-730. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a6/