Spectral Properties of the Non-Sectorial Sturm--Liouville Operator on the Semiaxis
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 693-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with some spectral properties of the Sturm–Liouville operator on the semiaxis $\mathbb{R}_+$ with a complex potential growing at infinity. Instead of the well-known V. B. Lidskii conditions concerning the boundedness from below of the real part or the semiboundedness of the imaginary part of the potential, it is assumed that the range of the potential is disjoint from some small sector containing the negative real semiaxis. Under some additional conditions on the potential, of the type of smoothness and regularity of the growth at infinity, it is shown that the numerical range of the operator fills the entire complex plane, the spectrum is discrete, there is a sector which is free from the spectrum, and any ray in this sector is a ray of the best decay of the resolvent. These facts are used to establish the basis property of the system of root vectors for the summation by the Abel–Lidskii method.
Keywords: Schrödinger operator, discreteness of the spectrum, nonsectorial operators, basis property for summation by the Abel–Lidskii method.
@article{MZM_2023_113_5_a5,
     author = {Kh. K. Ishkin},
     title = {Spectral {Properties} of the {Non-Sectorial} {Sturm--Liouville} {Operator} on the {Semiaxis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--712},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
TI  - Spectral Properties of the Non-Sectorial Sturm--Liouville Operator on the Semiaxis
JO  - Matematičeskie zametki
PY  - 2023
SP  - 693
EP  - 712
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/
LA  - ru
ID  - MZM_2023_113_5_a5
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%T Spectral Properties of the Non-Sectorial Sturm--Liouville Operator on the Semiaxis
%J Matematičeskie zametki
%D 2023
%P 693-712
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/
%G ru
%F MZM_2023_113_5_a5
Kh. K. Ishkin. Spectral Properties of the Non-Sectorial Sturm--Liouville Operator on the Semiaxis. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 693-712. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/

[1] M. A. Naimark, “Issledovanie spektra i razlozhenie po sobstvennym funktsiyam nesamosopryazhennogo differentsialnogo operatora vtorogo poryadka na poluosi”, Tr. MMO, 3, GITTL, M., 1954, 181–270 | MR | Zbl

[2] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, “Spektralnaya teoriya differentsialnykh operatorov”, Differentsialnye uravneniya s chastnymi proizvodnymi – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 64, VINITI, M., 1989, 5–242 | MR | Zbl

[3] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[4] B. Mityagin, P. Siegl, J. Viola, “Differential operators admitting various rates of spectral projection growth”, J. Funct. Anal., 272:8 (2017), 3129–3175 | DOI | MR

[5] Kh. K. Ishkin, “O spektralnoi neustoichivosti operatora Shturma–Liuvillya s kompleksnym potentsialom”, Differents. uravneniya, 45:4 (2009), 480–495 | DOI | MR | Zbl

[6] E. B. Davies, “Eigenvalues of an elliptic system”, Math. Z., 243:4 (2003), 719–743 | DOI | MR

[7] Kh. K. Ishkin, “O kriterii odnoznachnosti reshenii uravneniya Shturma–Liuvillya”, Matem. zametki, 84:4 (2008), 552–566 | DOI | MR | Zbl

[8] Kh. K. Ishkin, “O kriterii bezmonodromnosti uravneniya Shturma–Liuvillya”, Matem. zametki, 94:4 (2013), 552–568 | DOI | MR | Zbl

[9] Kh. K. Ishkin, A. V. Rezbaev, “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 84–93 | DOI | MR

[10] E. B. Davies, “Wild spectral behaviour of anharmonic oscillators”, Bull. London Math. Soc., 32:4 (2000), 432–438 | DOI | MR

[11] L. S. Boulton, “Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra”, J. Operator Theory, 47:2 (2002), 413–429 | MR

[12] E. B. Davies, A. B. J. Kuijlaars, “Spectral asymptotics of the non-self-adjoint harmonic oscillator”, J. London Math. Soc. (2), 70:2 (2003), 420–426 | DOI | MR

[13] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. MMO, 11, GIFML, M., 1962, 3–35 | MR | Zbl

[14] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[15] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR

[16] M. V. Fedoryuk, “Asimptoticheskie metody v teorii obyknovennykh lineinykh differentsialnykh uravnenii”, Matem. sb., 79 (121):4 (8) (1969), 477–516 | DOI | MR | Zbl

[17] E. B. Davies, “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34:5 (2002), 513–532 | DOI | MR

[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[20] V. B. Lidskii, “Nesamosopryazhennyi operator tipa Shturma–Liuvillya s diskretnym spektrom”, Tr. MMO, 9, GIFML, M., 1960, 45–79 | MR | Zbl

[21] A. M. Savchuk, A. A. Shkalikov, “Spektralnye svoistva kompleksnogo operatora Eiri na poluosi”, Funkts. analiz i ego pril., 51:1 (2017), 82–98 | DOI | MR

[22] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[23] M. S. Agranovich, “Spektralnye svoistva zadach difraktsii”, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[24] S. N. Tumanov, “Completeness theorem for the system of eigenfunctions of the complex Schrödinger operator $L_c =-d^2/dx^2 + c x^{\alpha}$”, J. Differential Equations, 319 (2022), 80–99 | DOI | MR

[25] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR

[26] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR