Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_5_a5, author = {Kh. K. Ishkin}, title = {Spectral {Properties} of the {Non-Sectorial} {Sturm--Liouville} {Operator} on the {Semiaxis}}, journal = {Matemati\v{c}eskie zametki}, pages = {693--712}, publisher = {mathdoc}, volume = {113}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/} }
Kh. K. Ishkin. Spectral Properties of the Non-Sectorial Sturm--Liouville Operator on the Semiaxis. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 693-712. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a5/
[1] M. A. Naimark, “Issledovanie spektra i razlozhenie po sobstvennym funktsiyam nesamosopryazhennogo differentsialnogo operatora vtorogo poryadka na poluosi”, Tr. MMO, 3, GITTL, M., 1954, 181–270 | MR | Zbl
[2] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, “Spektralnaya teoriya differentsialnykh operatorov”, Differentsialnye uravneniya s chastnymi proizvodnymi – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 64, VINITI, M., 1989, 5–242 | MR | Zbl
[3] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl
[4] B. Mityagin, P. Siegl, J. Viola, “Differential operators admitting various rates of spectral projection growth”, J. Funct. Anal., 272:8 (2017), 3129–3175 | DOI | MR
[5] Kh. K. Ishkin, “O spektralnoi neustoichivosti operatora Shturma–Liuvillya s kompleksnym potentsialom”, Differents. uravneniya, 45:4 (2009), 480–495 | DOI | MR | Zbl
[6] E. B. Davies, “Eigenvalues of an elliptic system”, Math. Z., 243:4 (2003), 719–743 | DOI | MR
[7] Kh. K. Ishkin, “O kriterii odnoznachnosti reshenii uravneniya Shturma–Liuvillya”, Matem. zametki, 84:4 (2008), 552–566 | DOI | MR | Zbl
[8] Kh. K. Ishkin, “O kriterii bezmonodromnosti uravneniya Shturma–Liuvillya”, Matem. zametki, 94:4 (2013), 552–568 | DOI | MR | Zbl
[9] Kh. K. Ishkin, A. V. Rezbaev, “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 84–93 | DOI | MR
[10] E. B. Davies, “Wild spectral behaviour of anharmonic oscillators”, Bull. London Math. Soc., 32:4 (2000), 432–438 | DOI | MR
[11] L. S. Boulton, “Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra”, J. Operator Theory, 47:2 (2002), 413–429 | MR
[12] E. B. Davies, A. B. J. Kuijlaars, “Spectral asymptotics of the non-self-adjoint harmonic oscillator”, J. London Math. Soc. (2), 70:2 (2003), 420–426 | DOI | MR
[13] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. MMO, 11, GIFML, M., 1962, 3–35 | MR | Zbl
[14] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR
[15] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR
[16] M. V. Fedoryuk, “Asimptoticheskie metody v teorii obyknovennykh lineinykh differentsialnykh uravnenii”, Matem. sb., 79 (121):4 (8) (1969), 477–516 | DOI | MR | Zbl
[17] E. B. Davies, “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34:5 (2002), 513–532 | DOI | MR
[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[20] V. B. Lidskii, “Nesamosopryazhennyi operator tipa Shturma–Liuvillya s diskretnym spektrom”, Tr. MMO, 9, GIFML, M., 1960, 45–79 | MR | Zbl
[21] A. M. Savchuk, A. A. Shkalikov, “Spektralnye svoistva kompleksnogo operatora Eiri na poluosi”, Funkts. analiz i ego pril., 51:1 (2017), 82–98 | DOI | MR
[22] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR
[23] M. S. Agranovich, “Spektralnye svoistva zadach difraktsii”, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR
[24] S. N. Tumanov, “Completeness theorem for the system of eigenfunctions of the complex Schrödinger operator $L_c =-d^2/dx^2 + c x^{\alpha}$”, J. Differential Equations, 319 (2022), 80–99 | DOI | MR
[25] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR
[26] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR