Contact Vectors of Point Lattices
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 667-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

The contact vectors of a lattice $L$ are vectors $l$ which are minimal in the $l^2$-norm l in their parity class. It is shown that, in the space of all symmetric matrices, the set of all contact vectors of the lattice $L$ defines the subspace $M(L)$ containing the Gram matrix $A$ of the lattice $L$. The notion of extremal set of contact vectors is introduced as a set for which the space $M(L)$ is one-dimensional. In this case, the lattice $L$ is rigid. Each dual cell of the lattice $L$ is associated with a set of contact vectors contained in it. A dual cell is extremal if its set of contact vectors is extremal. As an illustration, we prove the rigidity of the root lattice $D_n$ for $n\ge 4$ and the lattice $E_6^*$ dual to the root lattice $E_6$.
Keywords: Dirichlet–Voronoi cell, contact vectors, extremal set of contact vectors.
@article{MZM_2023_113_5_a3,
     author = {V. P. Grishukhin},
     title = {Contact {Vectors} of {Point} {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--676},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a3/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Contact Vectors of Point Lattices
JO  - Matematičeskie zametki
PY  - 2023
SP  - 667
EP  - 676
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a3/
LA  - ru
ID  - MZM_2023_113_5_a3
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Contact Vectors of Point Lattices
%J Matematičeskie zametki
%D 2023
%P 667-676
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a3/
%G ru
%F MZM_2023_113_5_a3
V. P. Grishukhin. Contact Vectors of Point Lattices. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 667-676. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a3/

[1] N. P. Dolbilin, “Svoistva granei paralleloedrov”, Geometriya, topologiya i matematicheskaya fizika. II, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Trudy MIAN, 266, Nauka, M., 2009, 112–126 | MR | Zbl

[2] M. Deza, V. Grishukhin, “Nonrigidity degrees of root lattices and their duals”, Geom. Dedicata, 104 (2004), 15–24 | DOI | MR

[3] J. H. Conway, N. J. A. Sloane, “The cell structures of certain lattices”, Miscellanea Mathematica, Springer-Verlag, Berlin, 1991, 71–107 | MR

[4] G. F. Voronoi, “Issledovanie o primitivnykh paralleloedrakh”, Sobranie sochinenii, v. 2, Izd-vo AN USSR, Kiev, 1952, 239–368 | MR

[5] A. Ordin, A Proof of Voronoi Conjecture on Parallelotopes in a New Special Case, Ph. D. thesis, Queen's University, Kingston, 2005

[6] E. P. Baranovskii, “Razbienie evklidovykh prostranstv na $L$-mnogogranniki nekotorykh sovershennykh reshetok”, Diskretnaya geometriya i topologiya, K 100-letiyu so dnya rozhdeniya Borisa Nikolaevicha Delone, Tr. MIAN SSSR, 196, Nauka, M., 1991, 27–46 | MR | Zbl

[7] E. P. Baranovskii, V. P.Grishukhin, “Non-rigidity degree of a lattice and rigid lattices”, European J. Combin., 22:7 (2001), 921–935 | DOI | MR

[8] M. M. Deza, M. Loran, Geometriya razrezov, MTsNMO, 2001 | MR

[9] V. P. Grishukhin, “Mnogogranniki Voronogo kornevoi reshetki $E_6$ i ei dvoistvennoi”, Diskret. matem., 22:2 (2010), 133–147 | DOI | MR