Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 655-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many problems, for example, problems on the properties of the attainability set of a linear control system, are reduced to finding the projection of zero onto some convex compact subset in a finite-dimensional Euclidean space. This set is given by its support function. In this paper, we discuss some minimum sufficient conditions that must be imposed on a convex compact set so that the gradient projection method for solving the problem of finding the projection of zero onto this set converges at a linear rate. An example is used to illustrate the importance of such conditions.
Keywords: gradient projection method, supporting ball, function growth conditions, nonsmooth analysis.
@article{MZM_2023_113_5_a2,
     author = {M. V. Balashov},
     title = {Sufficient {Conditions} for the {Linear} {Convergence} of an {Algorithm} for {Finding} the {Metric} {Projection} of a {Point} onto a {Convex} {Compact} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {655--666},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set
JO  - Matematičeskie zametki
PY  - 2023
SP  - 655
EP  - 666
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/
LA  - ru
ID  - MZM_2023_113_5_a2
ER  - 
%0 Journal Article
%A M. V. Balashov
%T Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set
%J Matematičeskie zametki
%D 2023
%P 655-666
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/
%G ru
%F MZM_2023_113_5_a2
M. V. Balashov. Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 655-666. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/

[1] B. T. Polyak, “Gradientnye metody minimizatsii funktsionalov”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 643–653 | MR | Zbl

[2] E. S. Levitin, B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl

[3] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007

[4] M. V. Balashov, “Nekotorye optimizatsionnye zadachi s mnozhestvom dostizhimosti lineinoi upravlyaemoi sistemy”, Sovremennye problemy teorii funktsii i ikh prilozheniya (Materialy 21-i mezhdunarodnoi Saratovskoi zimnei shkoly), Saratovsii un-t, Saratov, 2022, 40–43

[5] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[6] D. Davis, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, “Subgradient methods for sharp weakly convex functions.”, J. Optim. Theory Appl., 179:3 (2018), 962–982 | DOI | MR

[7] M. V. Balashov, “O metode proektsii gradienta dlya slabo vypukloi funktsii na proksimalno gladkom mnozhestve”, Matem. zametki, 108:5 (2020), 657–668 | DOI | MR

[8] R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12 (1) (1965), 1–12 | DOI | MR

[9] M. V. Balashov, “Silnaya vypuklost mnozhestv dostizhimosti lineinykh sistem”, Matem. sb., 213:5 (2022), 30–49

[10] M. V. Balashov, “Vlozhenie gomoteta v vypuklyi kompakt: algoritm i ego skhodimost”, Vestnik rossiiskikh universitetov. Matematika, 27:138 (2022), 143–149 | DOI

[11] P. Cannarsa, H. Frankowska, “Interior sphere property of attainable sets and time optimal control problems”, ESAIM Control Optim. Calc. Var., 12:2 (2006), 350–370 | DOI | MR

[12] V. M. Veliov, “On the convexity of integrals of multivalued mappings: applications in control theory”, J. Optim. Theory Appl., 54:3 (1987), 541–563 | DOI | MR