Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_5_a2, author = {M. V. Balashov}, title = {Sufficient {Conditions} for the {Linear} {Convergence} of an {Algorithm} for {Finding} the {Metric} {Projection} of a {Point} onto a {Convex} {Compact} {Set}}, journal = {Matemati\v{c}eskie zametki}, pages = {655--666}, publisher = {mathdoc}, volume = {113}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/} }
TY - JOUR AU - M. V. Balashov TI - Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set JO - Matematičeskie zametki PY - 2023 SP - 655 EP - 666 VL - 113 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/ LA - ru ID - MZM_2023_113_5_a2 ER -
%0 Journal Article %A M. V. Balashov %T Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set %J Matematičeskie zametki %D 2023 %P 655-666 %V 113 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/ %G ru %F MZM_2023_113_5_a2
M. V. Balashov. Sufficient Conditions for the Linear Convergence of an Algorithm for Finding the Metric Projection of a Point onto a Convex Compact Set. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 655-666. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a2/
[1] B. T. Polyak, “Gradientnye metody minimizatsii funktsionalov”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 643–653 | MR | Zbl
[2] E. S. Levitin, B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl
[3] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007
[4] M. V. Balashov, “Nekotorye optimizatsionnye zadachi s mnozhestvom dostizhimosti lineinoi upravlyaemoi sistemy”, Sovremennye problemy teorii funktsii i ikh prilozheniya (Materialy 21-i mezhdunarodnoi Saratovskoi zimnei shkoly), Saratovsii un-t, Saratov, 2022, 40–43
[5] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[6] D. Davis, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, “Subgradient methods for sharp weakly convex functions.”, J. Optim. Theory Appl., 179:3 (2018), 962–982 | DOI | MR
[7] M. V. Balashov, “O metode proektsii gradienta dlya slabo vypukloi funktsii na proksimalno gladkom mnozhestve”, Matem. zametki, 108:5 (2020), 657–668 | DOI | MR
[8] R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12 (1) (1965), 1–12 | DOI | MR
[9] M. V. Balashov, “Silnaya vypuklost mnozhestv dostizhimosti lineinykh sistem”, Matem. sb., 213:5 (2022), 30–49
[10] M. V. Balashov, “Vlozhenie gomoteta v vypuklyi kompakt: algoritm i ego skhodimost”, Vestnik rossiiskikh universitetov. Matematika, 27:138 (2022), 143–149 | DOI
[11] P. Cannarsa, H. Frankowska, “Interior sphere property of attainable sets and time optimal control problems”, ESAIM Control Optim. Calc. Var., 12:2 (2006), 350–370 | DOI | MR
[12] V. M. Veliov, “On the convexity of integrals of multivalued mappings: applications in control theory”, J. Optim. Theory Appl., 54:3 (1987), 541–563 | DOI | MR