Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_5_a11, author = {M. Kh. Faizrahmanov}, title = {On the {Embedding} {of~the~First} {Nonconstructive} {Ordinal}}, journal = {Matemati\v{c}eskie zametki}, pages = {764--774}, publisher = {mathdoc}, volume = {113}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a11/} }
M. Kh. Faizrahmanov. On the Embedding of~the~First Nonconstructive Ordinal. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 764-774. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a11/
[1] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641
[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[3] Yu. L. Ershov, “Theory of numberings”, Handbook of Computability Theory, Stud. Logic Found. Math., 140, Elsevier, Amsterdam, 1999, 473–503 | MR | Zbl
[4] A. B. Khutoretskii, “O moschnosti verkhnei polureshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR
[5] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl
[6] S. A. Badaev, S. Yu. Podzorov, “Minimalnye nakrytiya v polureshetkakh Rodzhersa $\Sigma_n^0$-vychislimykh numeratsii”, Sib. matem. zhurn., 43:4 (2002), 769–778 | MR | Zbl
[7] S. Yu. Podzorov, “O predelnosti naibolshego elementa polureshetki Rodzhersa”, Matem. tr., 7:2 (2004), 98–108 | MR | Zbl
[8] M. Kh. Faizrakhmanov, “O teoreme Khutoretskogo dlya obobschenno vychislimykh semeistv”, Algebra i logika, 58:4 (2019), 528–541 | DOI
[9] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987 | MR
[10] M. Kh. Faizrakhmanov, “Minimalnye obobschenno vychislimye numeratsii i vysokie stepeni”, Sib. matem. zhurn., 58:3 (2017), 710–716 | DOI
[11] S. S. Goncharov, A. Yakhnis, V. Yakhnis, “Some effectively infinite classes of enumerations”, Ann. Pure Appl. Logic, 60:3 (1993), 207–235 | DOI | MR
[12] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and Models, Springer, Boston, MA, 2003, 11–44 | MR