@article{MZM_2023_113_4_a7,
author = {D. S. Taletskii},
title = {On the {Number} of {Minimum} {Dominating} {Sets} in {Trees}},
journal = {Matemati\v{c}eskie zametki},
pages = {577--595},
year = {2023},
volume = {113},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a7/}
}
D. S. Taletskii. On the Number of Minimum Dominating Sets in Trees. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 577-595. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a7/
[1] A. E. Brouwer, The Number of Dominating Sets of a Finite Graph is Odd, , 2009 http://www.win.tue.nl/~aeb/preprints/domin2.pdf
[2] D. Bród, Z. Skupień, “Trees with extremal numbers of dominating sets”, Australas. J. Combin., 35 (2006), 273–290 | MR
[3] S. Wagner, “A note on the number of dominating sets of a graph”, Util. Math., 92 (2013), 25–31 | MR | Zbl
[4] D. S. Taletskii, “Trees with extremal numbers of $k$-dominating sets”, Discrete Math., 345:1 (2022) | DOI | MR | Zbl
[5] G. Gunther, B. Hartnell, L. R. Markus, D. Rall, “Graphs with unique minimum dominating sets”, Proceedings of the Twenty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), Congr. Numer., 101, 1994, 55–63 | MR
[6] A. Bień, “Properties of gamma graphs of trees”, Presentation at the 17th Workshop on Graph Theory Colourings, Independence and Domination (CID 2017), Piechowice, Poland
[7] J. Alvarado, S. Dantas, E. Mohr, D. Rautenbach, “On the maximum number of minimum dominating sets in forests”, Discrete Math., 342:4 (2018), 934–942 | DOI | MR