On the Number of Minimum Dominating Sets in Trees
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 577-595
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of trees in which the degree of each vertex does not exceed an integer $d$ is considered.
It is shown that, for $d=4$, each $n$-vertex tree in this class contains at most $(\sqrt{2})^n$ minimum dominating sets (MDS), and the
structure of trees containing precisely $(\sqrt{2})^n$ MDS is described. On the other hand, for $d=5$, an $n$-vertex tree
containing more than $(1/3) \cdot 1.415^n$ MDS is constructed for each $n \geq 1$. It is shown that each $n$-vertex tree contains fewer than $1.4205^n$ MDS.
Keywords:
dominating set, minimum dominating set, tree.
@article{MZM_2023_113_4_a7,
author = {D. S. Taletskii},
title = {On the {Number} of {Minimum} {Dominating} {Sets} in {Trees}},
journal = {Matemati\v{c}eskie zametki},
pages = {577--595},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a7/}
}
D. S. Taletskii. On the Number of Minimum Dominating Sets in Trees. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 577-595. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a7/