Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of differential and integral operations are given whose dimension is modified as a result of the introduction of new radial variables. Based on the integral measure $x^\gamma\,dx$, $\gamma>-1$, with a weak singularity, we introduce an operator that is interpreted as the Laplace operator in the space of functions of a fractional number of variables. The integration with respect to the measure $x^\gamma\,dx$, $\gamma>-1$, can also be interpreted as the integration over a domain of fractional dimension. The coefficient $\gamma>-1$ of hidden spherical symmetry is introduced. A formula is obtained that relates this coefficient to the Hausdorff dimension of a set in $\mathbb{R}_n$ and the Euclidean dimension $n$. The existence of hidden spherical symmetries is verified by calculating the dimension of the $m$th generation of the Koch curve for arbitrary positive integer $m$.
Keywords: Laplace operator, Kipriyanov operator, Laplace–Bessel–Kipriyanov operator, singular differential Bessel operator, fractal, self-similarity, integral measure, Hausdorff–Besikovich dimension, Koch curve, generations of the Koch curve.
Mots-clés : fractional dimension, Hausdorff dimension, fractal dimension
@article{MZM_2023_113_4_a3,
     author = {L. N. Lyakhov and E. Sanina},
     title = {Differential and {Integral} {Operations} in {Hidden} {Spherical} {Symmetry} and the {Dimension} of the {Koch} {Curve}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--528},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - E. Sanina
TI  - Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
JO  - Matematičeskie zametki
PY  - 2023
SP  - 517
EP  - 528
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/
LA  - ru
ID  - MZM_2023_113_4_a3
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A E. Sanina
%T Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
%J Matematičeskie zametki
%D 2023
%P 517-528
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/
%G ru
%F MZM_2023_113_4_a3
L. N. Lyakhov; E. Sanina. Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/

[1] L. N. Lyakhov, E. L. Sanina, “Operator Kipriyanova–Beltrami s otritsatelnoi razmernostyu operatora Besselya i singulyarnaya zadacha Dirikhle dlya $B$-garmonicheskogo uravneniya”, Differents. uravneniya, 56:12 (2020), 1610–1520 | MR

[2] I. A. Kipriyanov, L. A. Ivanov, “Poluchenie fundamentalnykh reshenii dlya odnorodnykh uravnenii s osobennostyami po neskolkim peremennym”, Tr. seminara S. L. Soboleva, 1983, no. 1, 55–77 | MR

[3] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[4] L. N. Lyakhov, “O radialnykh funktsiyakh klassicheskikh statsionarnykh uravneniyakh v evklidovykh prostranstvakh drobnoi razmernosti”, AMADE–2011, Izdatelskii tsentr BGU, Minsk, 2012, 115–126

[5] P. Devis, Supersila. Poisk edinoi teorii prirody, Mir, M., 1989

[6] L. N. Lyakhov, “Postroenie yader Dirikhle i Valle-Pussena–Nikolskogo dlya $j$-besselevykh integralov Fure”, Tr. MMO, 76:1 (2015), 67–84

[7] R. Metzler, W. G. Glockle, Th. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24 | DOI

[8] L. N. Lyakhov, N. I. Trusova, “Chastno-integralnye operatory neotritsatelnykh poryadkov v vesovykh prostranstvakh Lebega”, Chelyab. fiz.-matem. zhurn., 6:3 (2021), 289–298 | DOI

[9] F. Ion, Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi integralami, IL, M., 1958

[10] G. Gurevich, Teoriya razmernosti, IL, M., 1948

[11] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985

[12] E. Feder, Fraktaly, Mir, M., 1991 | MR

[13] K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Chichester, Wiley, 1990 | MR

[14] B. Mandelbrot, Fraktalnaya geometriya prirody, In-t kompyuternykh issledovanii, M., 2002 | MR

[15] V. A. Ilin, E. G. Poznyak, Osnovy matemakticheskogo analiza, v. I, Nauka, M. | MR

[16] M. Fernandez-Martinez, “A survey on fractal dimension for fractal structures”, Appl. Math. Nonlinear Sci., 1:2 (2016), 437–472 | DOI | MR

[17] Yu. N. Bulatov, V. A. Kalitvin, E. L. Sanina, “Razmernosti fraktala tipa “kantorovskoi pyli”, porozhdennye sfericheskoi simmetriei”, Vest. fakulteta prikl. matem. i mekh., 15 (2021), 50–64