Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_4_a3, author = {L. N. Lyakhov and E. Sanina}, title = {Differential and {Integral} {Operations} in {Hidden} {Spherical} {Symmetry} and the {Dimension} of the {Koch} {Curve}}, journal = {Matemati\v{c}eskie zametki}, pages = {517--528}, publisher = {mathdoc}, volume = {113}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/} }
TY - JOUR AU - L. N. Lyakhov AU - E. Sanina TI - Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve JO - Matematičeskie zametki PY - 2023 SP - 517 EP - 528 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/ LA - ru ID - MZM_2023_113_4_a3 ER -
%0 Journal Article %A L. N. Lyakhov %A E. Sanina %T Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve %J Matematičeskie zametki %D 2023 %P 517-528 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/ %G ru %F MZM_2023_113_4_a3
L. N. Lyakhov; E. Sanina. Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/
[1] L. N. Lyakhov, E. L. Sanina, “Operator Kipriyanova–Beltrami s otritsatelnoi razmernostyu operatora Besselya i singulyarnaya zadacha Dirikhle dlya $B$-garmonicheskogo uravneniya”, Differents. uravneniya, 56:12 (2020), 1610–1520 | MR
[2] I. A. Kipriyanov, L. A. Ivanov, “Poluchenie fundamentalnykh reshenii dlya odnorodnykh uravnenii s osobennostyami po neskolkim peremennym”, Tr. seminara S. L. Soboleva, 1983, no. 1, 55–77 | MR
[3] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR
[4] L. N. Lyakhov, “O radialnykh funktsiyakh klassicheskikh statsionarnykh uravneniyakh v evklidovykh prostranstvakh drobnoi razmernosti”, AMADE–2011, Izdatelskii tsentr BGU, Minsk, 2012, 115–126
[5] P. Devis, Supersila. Poisk edinoi teorii prirody, Mir, M., 1989
[6] L. N. Lyakhov, “Postroenie yader Dirikhle i Valle-Pussena–Nikolskogo dlya $j$-besselevykh integralov Fure”, Tr. MMO, 76:1 (2015), 67–84
[7] R. Metzler, W. G. Glockle, Th. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24 | DOI
[8] L. N. Lyakhov, N. I. Trusova, “Chastno-integralnye operatory neotritsatelnykh poryadkov v vesovykh prostranstvakh Lebega”, Chelyab. fiz.-matem. zhurn., 6:3 (2021), 289–298 | DOI
[9] F. Ion, Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi integralami, IL, M., 1958
[10] G. Gurevich, Teoriya razmernosti, IL, M., 1948
[11] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985
[12] E. Feder, Fraktaly, Mir, M., 1991 | MR
[13] K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Chichester, Wiley, 1990 | MR
[14] B. Mandelbrot, Fraktalnaya geometriya prirody, In-t kompyuternykh issledovanii, M., 2002 | MR
[15] V. A. Ilin, E. G. Poznyak, Osnovy matemakticheskogo analiza, v. I, Nauka, M. | MR
[16] M. Fernandez-Martinez, “A survey on fractal dimension for fractal structures”, Appl. Math. Nonlinear Sci., 1:2 (2016), 437–472 | DOI | MR
[17] Yu. N. Bulatov, V. A. Kalitvin, E. L. Sanina, “Razmernosti fraktala tipa “kantorovskoi pyli”, porozhdennye sfericheskoi simmetriei”, Vest. fakulteta prikl. matem. i mekh., 15 (2021), 50–64