Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of differential and integral operations are given whose dimension is modified as a result of the introduction of new radial variables. Based on the integral measure $x^\gamma\,dx$, $\gamma>-1$, with a weak singularity, we introduce an operator that is interpreted as the Laplace operator in the space of functions of a fractional number of variables. The integration with respect to the measure $x^\gamma\,dx$, $\gamma>-1$, can also be interpreted as the integration over a domain of fractional dimension. The coefficient $\gamma>-1$ of hidden spherical symmetry is introduced. A formula is obtained that relates this coefficient to the Hausdorff dimension of a set in $\mathbb{R}_n$ and the Euclidean dimension $n$. The existence of hidden spherical symmetries is verified by calculating the dimension of the $m$th generation of the Koch curve for arbitrary positive integer $m$.
Keywords: Laplace operator, Kipriyanov operator, Laplace–Bessel–Kipriyanov operator, singular differential Bessel operator, fractal, self-similarity, integral measure, Hausdorff–Besikovich dimension, Koch curve, generations of the Koch curve.
Mots-clés : fractional dimension, Hausdorff dimension, fractal dimension
@article{MZM_2023_113_4_a3,
     author = {L. N. Lyakhov and E. Sanina},
     title = {Differential and {Integral} {Operations} in {Hidden} {Spherical} {Symmetry} and the {Dimension} of the {Koch} {Curve}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--528},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - E. Sanina
TI  - Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
JO  - Matematičeskie zametki
PY  - 2023
SP  - 517
EP  - 528
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/
LA  - ru
ID  - MZM_2023_113_4_a3
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A E. Sanina
%T Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
%J Matematičeskie zametki
%D 2023
%P 517-528
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/
%G ru
%F MZM_2023_113_4_a3
L. N. Lyakhov; E. Sanina. Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/