Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528
Voir la notice de l'article provenant de la source Math-Net.Ru
Examples of differential and integral operations are given whose dimension is modified as a result of the introduction of new radial variables.
Based on the integral measure $x^\gamma\,dx$, $\gamma>-1$, with a weak singularity, we introduce
an operator that is interpreted as the Laplace operator in the space of functions of a fractional number of
variables. The integration with respect to the measure $x^\gamma\,dx$, $\gamma>-1$,
can also be interpreted as the integration over a domain of fractional dimension. The coefficient
$\gamma>-1$ of hidden spherical symmetry is introduced. A formula is obtained that
relates this coefficient to the Hausdorff dimension of a set in $\mathbb{R}_n$
and the Euclidean dimension $n$. The existence of hidden spherical symmetries is verified by calculating the
dimension of the $m$th generation of the Koch curve for arbitrary positive
integer $m$.
Keywords:
Laplace operator, Kipriyanov operator, Laplace–Bessel–Kipriyanov operator,
singular differential Bessel operator, fractal,
self-similarity, integral measure, Hausdorff–Besikovich
dimension, Koch curve, generations of the
Koch curve.
Mots-clés : fractional dimension, Hausdorff dimension, fractal dimension
Mots-clés : fractional dimension, Hausdorff dimension, fractal dimension
@article{MZM_2023_113_4_a3,
author = {L. N. Lyakhov and E. Sanina},
title = {Differential and {Integral} {Operations} in {Hidden} {Spherical} {Symmetry} and the {Dimension} of the {Koch} {Curve}},
journal = {Matemati\v{c}eskie zametki},
pages = {517--528},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/}
}
TY - JOUR AU - L. N. Lyakhov AU - E. Sanina TI - Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve JO - Matematičeskie zametki PY - 2023 SP - 517 EP - 528 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/ LA - ru ID - MZM_2023_113_4_a3 ER -
%0 Journal Article %A L. N. Lyakhov %A E. Sanina %T Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve %J Matematičeskie zametki %D 2023 %P 517-528 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/ %G ru %F MZM_2023_113_4_a3
L. N. Lyakhov; E. Sanina. Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a3/