Equality of Dimensions for Some Paracompact
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 499-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equality of the dimensions $\operatorname{Ind}X$ and $\operatorname{dim}X$ of a first countable paracompact $\sigma$-space $X$ with a 1-continuous semimetric is proved. A partial positive answer to A. V. Arkhangel'skii's question about the equality of dimensions for first countable spaces with a countable network is given. As a consequence, the equality of the dimensions $\operatorname{Ind}X$ and $\operatorname{dim}X$ for Nagata spaces (that is, stratifiable first countable spaces) with a 1-continuous semimetric is obtained.
Mots-clés : dimension, stratifiable space.
Keywords: network, $\sigma$-space
@article{MZM_2023_113_4_a2,
     author = {I. M. Leibo},
     title = {Equality of {Dimensions} for {Some} {Paracompact}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {499--516},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/}
}
TY  - JOUR
AU  - I. M. Leibo
TI  - Equality of Dimensions for Some Paracompact
JO  - Matematičeskie zametki
PY  - 2023
SP  - 499
EP  - 516
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/
LA  - ru
ID  - MZM_2023_113_4_a2
ER  - 
%0 Journal Article
%A I. M. Leibo
%T Equality of Dimensions for Some Paracompact
%J Matematičeskie zametki
%D 2023
%P 499-516
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/
%G ru
%F MZM_2023_113_4_a2
I. M. Leibo. Equality of Dimensions for Some Paracompact. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 499-516. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/

[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] A. V. Arkhangelskii, “Otobrazheniya i prostranstva”, UMN, 21:4 (130) (1966), 133–184 | MR | Zbl

[3] A. V. Arkhangelskii, “Klassy topologicheskikh grupp”, UMN, 36:3 (219) (1981), 127–146 | MR | Zbl

[4] I. M. Leibo, “O zamknutykh obrazakh metricheskikh prostranstv”, Dokl. AN SSSR, 224:4 (1975), 756–759 | MR | Zbl

[5] I. M. Leibo, “O razmernosti nekotorykh prostranstv”, Dokl. AN SSSR, 262:1 (1982), 26–29 | MR

[6] C. J. R. Borges, “On continuously semimetrizable and stratifiable spaces”, Proc. Amer. Math. Soc., 24:2 (1970), 193–196 | DOI | MR

[7] I. M. Leibo, “On the dimension of some semi-metric spaces”, Conf. Set-Theoretic Top. and Top. Algebra, 2018, 36–37

[8] I. M. Leibo, “O razmernosti proobrazov nekotorykh parakompaktnykh prostranstv”, Matem. zametki, 103:3 (2018), 404–416 | DOI | MR

[9] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978 | MR

[10] Sh. Lin, Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Press, Paris, 2016 | MR | Zbl

[11] S. Oka, “Dimension of stratifiable spaces”, Trans. Amer. Math. Soc., 275:1 (1983), 231–243 | DOI | MR

[12] J. Dugundji, “An extension of Tietzes theorem”, Pacific J. Math., 1:3 (1951), 353–367 | DOI | MR

[13] G. M. Reed, “Concerning first countable spaces”, Fund. Math., 74:1 (1972), 161–169 | DOI | MR

[14] M. Ito, “$M_3$-spaces whose every point has a closure preserving outer base are $M_1$”, Topology Appl., 19:1 (1985), 65–69 | DOI | MR