Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_4_a2, author = {I. M. Leibo}, title = {Equality of {Dimensions} for {Some} {Paracompact}}, journal = {Matemati\v{c}eskie zametki}, pages = {499--516}, publisher = {mathdoc}, volume = {113}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/} }
I. M. Leibo. Equality of Dimensions for Some Paracompact. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 499-516. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/
[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[2] A. V. Arkhangelskii, “Otobrazheniya i prostranstva”, UMN, 21:4 (130) (1966), 133–184 | MR | Zbl
[3] A. V. Arkhangelskii, “Klassy topologicheskikh grupp”, UMN, 36:3 (219) (1981), 127–146 | MR | Zbl
[4] I. M. Leibo, “O zamknutykh obrazakh metricheskikh prostranstv”, Dokl. AN SSSR, 224:4 (1975), 756–759 | MR | Zbl
[5] I. M. Leibo, “O razmernosti nekotorykh prostranstv”, Dokl. AN SSSR, 262:1 (1982), 26–29 | MR
[6] C. J. R. Borges, “On continuously semimetrizable and stratifiable spaces”, Proc. Amer. Math. Soc., 24:2 (1970), 193–196 | DOI | MR
[7] I. M. Leibo, “On the dimension of some semi-metric spaces”, Conf. Set-Theoretic Top. and Top. Algebra, 2018, 36–37
[8] I. M. Leibo, “O razmernosti proobrazov nekotorykh parakompaktnykh prostranstv”, Matem. zametki, 103:3 (2018), 404–416 | DOI | MR
[9] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978 | MR
[10] Sh. Lin, Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Press, Paris, 2016 | MR | Zbl
[11] S. Oka, “Dimension of stratifiable spaces”, Trans. Amer. Math. Soc., 275:1 (1983), 231–243 | DOI | MR
[12] J. Dugundji, “An extension of Tietzes theorem”, Pacific J. Math., 1:3 (1951), 353–367 | DOI | MR
[13] G. M. Reed, “Concerning first countable spaces”, Fund. Math., 74:1 (1972), 161–169 | DOI | MR
[14] M. Ito, “$M_3$-spaces whose every point has a closure preserving outer base are $M_1$”, Topology Appl., 19:1 (1985), 65–69 | DOI | MR