Equality of Dimensions for Some Paracompact
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 499-516
Voir la notice de l'article provenant de la source Math-Net.Ru
The equality of the dimensions $\operatorname{Ind}X$ and $\operatorname{dim}X$ of a first countable paracompact
$\sigma$-space $X$ with a 1-continuous semimetric is proved.
A partial positive answer to A. V. Arkhangel'skii's question about the equality
of dimensions for first countable spaces with a countable network is given.
As a consequence, the equality of the dimensions $\operatorname{Ind}X$ and
$\operatorname{dim}X$ for Nagata spaces (that is, stratifiable first countable spaces) with a 1-continuous
semimetric is obtained.
Mots-clés :
dimension, stratifiable space.
Keywords: network, $\sigma$-space
Keywords: network, $\sigma$-space
@article{MZM_2023_113_4_a2,
author = {I. M. Leibo},
title = {Equality of {Dimensions} for {Some} {Paracompact}},
journal = {Matemati\v{c}eskie zametki},
pages = {499--516},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/}
}
I. M. Leibo. Equality of Dimensions for Some Paracompact. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 499-516. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a2/