Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_3_a8, author = {V. N. Sorokin}, title = {On {Polynomials} {Defined} by the {Discrete} {Rodrigues} {Formula}}, journal = {Matemati\v{c}eskie zametki}, pages = {423--439}, publisher = {mathdoc}, volume = {113}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/} }
V. N. Sorokin. On Polynomials Defined by the Discrete Rodrigues Formula. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 423-439. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/
[1] J. Meixner, “Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR
[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966 | MR
[3] V. N. Sorokin, “O mnogochlenakh sovmestnoi ortogonalnosti dlya diskretnykh mer Meiksnera”, Matem. sb., 201:10 (2010), 137–160 | DOI | MR | Zbl
[4] V. N. Sorokin, E. N. Cherednikova, “Mnogochleny Meiksnera s peremennym vesom”, Sovrem. problemy matem. i mekh., 6:1 (2011), 118–125
[5] V. N. Sorokin, Ob asimptoticheskikh rezhimakh sovmestnykh mnogochlenov Meiksnera, Preprinty IPM im. M. V. Keldysha, No46, 2016
[6] V. N. Sorokin, Mnogochleny Anzhelesko–Meiksnera, Preprinty IPM im. M. V. Keldysha, No27, 2017
[7] V. N. Sorokin, “O mnogochlenakh sovmestnoi ortogonalnosti dlya trekh mer Meiksnera”, Kompleksnyi analiz i ego prilozheniya, Tr. MIAN, 298, Nauka, M., 2017, 315–337 | DOI
[8] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR
[9] V. N. Sorokin, “Asymptotics of Hermite–Padé approximants of the First Type for Discrete Meixner Measures”, Lobachevskii J. Math., 42 (2021), 2654–2667 | DOI | MR
[10] A. V. Dyachenko, V. G. Lysov, O mnogochlenakh sovmestnoi diskretnoi ortogonalnosti na reshetkakh so sdvigom, Preprinty IPM im. M. V. Keldysha, No218, 2018
[11] S. P. Suetin, “Dva primera, svyazannye so svoistvami diskretnykh mer”, Matem. zametki, 110:4 (2021), 592–597 | DOI | MR
[12] V. N. Sorokin, “Mnogotochechnye approksimatsii Pade psi-funktsii”, Matem. zametki, 110:4 (2021), 584–591 | DOI
[13] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203 | DOI | MR | Zbl
[14] A. A. Kandayan, V. N. Sorokin, “Mnogotochechnye approksimatsii Ermita–Pade beta-funktsii”, Matem. zametki, 87:2 (2010), 217–232 | DOI | MR | Zbl
[15] A. A. Kandayan, V. N. Sorokin, “Asimptotika mnogotochechnykh approksimatsii Ermita–Pade pervogo tipa dlya dvukh beta-funktsii”, Matem. zametki, 101:6 (2017), 871–882 | DOI
[16] J. Touchard, “Nombres exponentiels et nombres de Bernoulli”, Canadian J. Math., 8 (1956), 305–320 | DOI | MR
[17] M. Prevost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Pade approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl
[18] R. Apery, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | MR | Zbl
[19] V. N. Sorokin, “O teoreme Zudilina–Rivoalya”, Matem. zametki, 81:6 (2007), 912–923 | DOI | MR | Zbl
[20] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl
[21] E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | DOI | MR | Zbl
[22] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | MR | Zbl
[23] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6(402) (2011), 3–36 | DOI | MR | Zbl
[24] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent Advances in Orthogonal Polynomials, Special Functions and their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl