On Polynomials Defined by the Discrete Rodrigues Formula
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 423-439

Voir la notice de l'article provenant de la source Math-Net.Ru

We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.
Mots-clés : Meixner polynomial, discrete Rodrigues formula
Keywords: saddle point method, algebraic function, equilibrium problem.
@article{MZM_2023_113_3_a8,
     author = {V. N. Sorokin},
     title = {On {Polynomials} {Defined} by the {Discrete} {Rodrigues} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {423--439},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On Polynomials Defined by the Discrete Rodrigues Formula
JO  - Matematičeskie zametki
PY  - 2023
SP  - 423
EP  - 439
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/
LA  - ru
ID  - MZM_2023_113_3_a8
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On Polynomials Defined by the Discrete Rodrigues Formula
%J Matematičeskie zametki
%D 2023
%P 423-439
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/
%G ru
%F MZM_2023_113_3_a8
V. N. Sorokin. On Polynomials Defined by the Discrete Rodrigues Formula. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 423-439. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/