On Polynomials Defined by the Discrete Rodrigues Formula
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 423-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.
Mots-clés : Meixner polynomial, discrete Rodrigues formula
Keywords: saddle point method, algebraic function, equilibrium problem.
@article{MZM_2023_113_3_a8,
     author = {V. N. Sorokin},
     title = {On {Polynomials} {Defined} by the {Discrete} {Rodrigues} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {423--439},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On Polynomials Defined by the Discrete Rodrigues Formula
JO  - Matematičeskie zametki
PY  - 2023
SP  - 423
EP  - 439
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/
LA  - ru
ID  - MZM_2023_113_3_a8
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On Polynomials Defined by the Discrete Rodrigues Formula
%J Matematičeskie zametki
%D 2023
%P 423-439
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/
%G ru
%F MZM_2023_113_3_a8
V. N. Sorokin. On Polynomials Defined by the Discrete Rodrigues Formula. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 423-439. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a8/

[1] J. Meixner, “Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR

[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966 | MR

[3] V. N. Sorokin, “O mnogochlenakh sovmestnoi ortogonalnosti dlya diskretnykh mer Meiksnera”, Matem. sb., 201:10 (2010), 137–160 | DOI | MR | Zbl

[4] V. N. Sorokin, E. N. Cherednikova, “Mnogochleny Meiksnera s peremennym vesom”, Sovrem. problemy matem. i mekh., 6:1 (2011), 118–125

[5] V. N. Sorokin, Ob asimptoticheskikh rezhimakh sovmestnykh mnogochlenov Meiksnera, Preprinty IPM im. M. V. Keldysha, No46, 2016

[6] V. N. Sorokin, Mnogochleny Anzhelesko–Meiksnera, Preprinty IPM im. M. V. Keldysha, No27, 2017

[7] V. N. Sorokin, “O mnogochlenakh sovmestnoi ortogonalnosti dlya trekh mer Meiksnera”, Kompleksnyi analiz i ego prilozheniya, Tr. MIAN, 298, Nauka, M., 2017, 315–337 | DOI

[8] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR

[9] V. N. Sorokin, “Asymptotics of Hermite–Padé approximants of the First Type for Discrete Meixner Measures”, Lobachevskii J. Math., 42 (2021), 2654–2667 | DOI | MR

[10] A. V. Dyachenko, V. G. Lysov, O mnogochlenakh sovmestnoi diskretnoi ortogonalnosti na reshetkakh so sdvigom, Preprinty IPM im. M. V. Keldysha, No218, 2018

[11] S. P. Suetin, “Dva primera, svyazannye so svoistvami diskretnykh mer”, Matem. zametki, 110:4 (2021), 592–597 | DOI | MR

[12] V. N. Sorokin, “Mnogotochechnye approksimatsii Pade psi-funktsii”, Matem. zametki, 110:4 (2021), 584–591 | DOI

[13] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203 | DOI | MR | Zbl

[14] A. A. Kandayan, V. N. Sorokin, “Mnogotochechnye approksimatsii Ermita–Pade beta-funktsii”, Matem. zametki, 87:2 (2010), 217–232 | DOI | MR | Zbl

[15] A. A. Kandayan, V. N. Sorokin, “Asimptotika mnogotochechnykh approksimatsii Ermita–Pade pervogo tipa dlya dvukh beta-funktsii”, Matem. zametki, 101:6 (2017), 871–882 | DOI

[16] J. Touchard, “Nombres exponentiels et nombres de Bernoulli”, Canadian J. Math., 8 (1956), 305–320 | DOI | MR

[17] M. Prevost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Pade approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR | Zbl

[18] R. Apery, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | MR | Zbl

[19] V. N. Sorokin, “O teoreme Zudilina–Rivoalya”, Matem. zametki, 81:6 (2007), 912–923 | DOI | MR | Zbl

[20] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl

[21] E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | DOI | MR | Zbl

[22] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | MR | Zbl

[23] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6(402) (2011), 3–36 | DOI | MR | Zbl

[24] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent Advances in Orthogonal Polynomials, Special Functions and their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl