On Numbers Not Representable as $n+w(n)$
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 392-404
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $w(n)$ be an additive nonnegative integer-valued arithmetic function equal to $1$ on primes. We study the distribution of $n+w(n)$ modulo a prime $p$ and give a lower bound for the density of numbers not representable as $n+w(n)$.
Keywords:
number of prime divisors, additive function.
Mots-clés : Perron's formula
Mots-clés : Perron's formula
@article{MZM_2023_113_3_a5,
author = {P. A. Kucheryavyi},
title = {On {Numbers} {Not} {Representable} as $n+w(n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {392--404},
year = {2023},
volume = {113},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a5/}
}
P. A. Kucheryavyi. On Numbers Not Representable as $n+w(n)$. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 392-404. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a5/
[1] M. E. Changa, “O chislakh, kolichestvo prostykh delitelei kotorykh prinadlezhit zadannomu klassu vychetov”, Izv. RAN Ser. matem., 83:1 (2019), 192–202 | DOI | MR
[2] M. E. Changa, Metody analiticheskoi teorii chisel, MTsNMO, 2019
[3] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 | MR
[4] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes. II”, Proc. London Math. Soc., 83:3 (2001), 532–562 | DOI | MR | Zbl
[5] P. Erdős, A. Sárkőzy, C. Pomerance, “On locally repeated values of certain arithmetic functions. I”, J. Number Theory, 21:3 (1985), 319–332 | DOI | MR