On Numbers Not Representable as $n+w(n)$
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 392-404
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $w(n)$ be an additive nonnegative integer-valued arithmetic function equal to $1$ on primes. We study the distribution of $n+w(n)$
modulo a prime $p$ and give a lower bound for the density of numbers not representable as $n+w(n)$.
Keywords:
number of prime divisors, additive function.
Mots-clés : Perron's formula
Mots-clés : Perron's formula
@article{MZM_2023_113_3_a5,
author = {P. A. Kucheryavyi},
title = {On {Numbers} {Not} {Representable} as $n+w(n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {392--404},
publisher = {mathdoc},
volume = {113},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a5/}
}
P. A. Kucheryavyi. On Numbers Not Representable as $n+w(n)$. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 392-404. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a5/