Enveloping of the Values of an Analytic Function Related to the Number~$e$
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 374-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of completely describing the approximation of the number $e$ by the elements of the sequence $(1+1/m)^m$, $m\in\mathbb{N}$, is considered. To this end, the function $f(z)=\exp\{(1/z)\ln(1+z)-1\}$, which is analytic in the complex plane with a cut along the half-line $(-\infty,-1]$ of the real line, is studied in detail. We prove that the power series $1+\sum^{\infty}_{n=1}(-1)^n a_n z^n$, where all $a_n$ are positive, which represents this function on the unit disk, envelops it in the open right half-plane. This gives a series of double inequalities for the deviation $e-(1+x)^{1/x}$ on the positive half-line, which are asymptotically sharp as $x\to 0$. Integral representations of the function $f(z)$ and of the coefficients $a_n$ are obtained. They play an important role in the study. A two-term asymptotics of the coeffients $a_n$ as $n\to \infty$ is found. We show that the coefficients form a logarithmically convex completely monotone sequence. We also obtain integral expressions for the derivatives of all orders of the function $f(z)$. It turns out that $f(x)$ is completely monotone on the half-line $x>-1$. Applications and development of the results are discussed.
Keywords: number $e$, analytic function, completely monotone sequence, completely monotone function, integral representation, enveloping series.
Mots-clés : Taylor coefficients
@article{MZM_2023_113_3_a4,
     author = {A. B. Kostin and V. B. Sherstyukov},
     title = {Enveloping of the {Values} of an {Analytic} {Function} {Related} to the {Number~}$e$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {374--391},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a4/}
}
TY  - JOUR
AU  - A. B. Kostin
AU  - V. B. Sherstyukov
TI  - Enveloping of the Values of an Analytic Function Related to the Number~$e$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 374
EP  - 391
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a4/
LA  - ru
ID  - MZM_2023_113_3_a4
ER  - 
%0 Journal Article
%A A. B. Kostin
%A V. B. Sherstyukov
%T Enveloping of the Values of an Analytic Function Related to the Number~$e$
%J Matematičeskie zametki
%D 2023
%P 374-391
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a4/
%G ru
%F MZM_2023_113_3_a4
A. B. Kostin; V. B. Sherstyukov. Enveloping of the Values of an Analytic Function Related to the Number~$e$. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 374-391. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a4/

[1] A. B. Kostin, V. B. Sherstyukov, “Asimptoticheskoe povedenie ostatkov chislovykh ryadov spetsialnogo vida”, Problemy matem. analiza, 2020, no. 107, 814–838 | DOI | MR

[2] A. B. Kostin, V. B. Sherstyukov, D. G. Tsvetkovich, “Ob approksimatsii chisla $\pi^{2}$”, Sistemy kompyuternoi matematiki i ikh prilozheniya. Smolensk, 2021, 261–264

[3] A. B. Kostin, V. B. Sherstyukov, D. G. Tsvetkovich, “Enveloping of Riemann's zeta function values and curious approximation”, Lobachevskii J. Math., 43:3 (2022), 624–629 | DOI | MR

[4] G. Polia, G. Sege, Zadachi i teoremy iz analiza, Chast pervaya. Ryady. Integralnoe ischislenie. Teoriya funktsii, Nauka, M., 1978 | MR

[5] B. M. Makarov, M. G. Goluzina, A. A. Lodkin, A. N. Podkorytov, Izbrannye zadachi po veschestvennomu analizu, Nauka, M., 1992 | MR

[6] V. V. Vavilov, “O nauchnykh issledovaniyakh uchaschikhsya shkoly imeni A. N. Kolmogorova”, Matem. obr., 2006, no. 2(37), 52–62

[7] V. M. Fedoseev, “Sposoby vychisleniya chisla "$e$”, Matem. obr., 2021, no. 2(98), 50–53

[8] A. B. Kostin, V. B. Sherstyukov, “O teilorovskikh koeffitsientakh analiticheskoi funktsii, svyazannoi s eilerovym chislom”, Ufimsk. matem. zhurn., 14:3 (2022), 74–89

[9] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949 | MR

[10] S. I. Kalmykov, D. B. Karp, “O logarifmicheskoi vognutosti ryadov s otnosheniyami gamma-funktsii”, Izv. vuzov. Matem., 2014, no. 6, 70–77

[11] A. Yu. Popov, “Otsenka sverkhu ostatka stepennogo ryada s polozhitelnymi koeffitsientami spetsialnogo vida”, Chelyab. fiz.-matem. zhurn., 2:2 (2017), 193–198 | MR

[12] G. G. Braichev, “On Stolz's theorem and its conversion”, Eurasian Math. Journal, 10:3 (2019), 8–19 | DOI | MR

[13] G. G. Braichev, “Sovmestnye otsenki kornei i teilorovskikh koeffitsientov tseloi funktsii”, Ufimsk. matem. zhurn., 13:1 (2021), 31–45 | MR

[14] J. A. Shohat, J. D. Tamarkin, The Problem of Moments, Mathematical Surveys, 1, American Mathematical Society, New York, 1943 | MR

[15] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatlit, M., 1961 | MR

[16] K. S. Miller, S. G. Samko, “Completely monotonic functions”, Integral Transform. Spec. Funct., 12:4 (2001), 389–402 | DOI | MR

[17] M. A. Evgrafov, Analiticheskie funktsii, Nauka, M., 1968 | MR

[18] M. V. Fedoryuk, Obvertyvayuschii ryad, Matematicheskaya entsiklopediya, 3, Sovetskaya entsiklopediya, M., 1982

[19] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fiz.-matem. lit., M., 1962

[20] A. Cauchy, “Sur un emploi légitime des séries divergentes”, Comptes Rendus, 17 (1843), 370–376