Keywords: differential operator, generalized finite difference, uniform grid.
@article{MZM_2023_113_3_a11,
author = {V. T. Shevaldin},
title = {Local {Extremal} {Interpolation} on the {Semiaxis} with the {Least} {Value} of the {Norm} for a {Linear} {Differential} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {453--460},
year = {2023},
volume = {113},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/}
}
TY - JOUR AU - V. T. Shevaldin TI - Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator JO - Matematičeskie zametki PY - 2023 SP - 453 EP - 460 VL - 113 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/ LA - ru ID - MZM_2023_113_3_a11 ER -
V. T. Shevaldin. Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 453-460. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/
[1] A. Sharma, I. Tsimbalario, “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl
[2] Yu. N. Subbotin, “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167 | MR
[3] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Ekstremalnye svoistva polinomov, Sbornik rabot, Tr. MIAN SSSR, 78, Nauka, M., 1965, 24–42 | MR | Zbl
[4] Yu. N. Subbotin, “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Priblizhenie funktsii v srednem, Sb. rabot, Tr. MIAN SSSR, 88, 1967, 30–60 | MR | Zbl
[5] Yu. N. Subbotin, “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Priblizhenie funktsii i operatorov, Sb. statei, Tr. MIAN SSSR, 138, 1975, 118–173 | MR | Zbl
[6] Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24:3 (2018), 200–225 | DOI | MR
[7] J. Favard, “Sur I'interpolation”, J. Math. Pures Appl. (9), 19 (1940), 281–306 | MR
[8] C. de Boor, “How small can one make the derivatives of an interpolating function?”, J. Approximation Theory, 13:2 (1975), 106–116 | MR
[9] C. de Boor, “A smooth and local interpolant with small $k$-th derivative”, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, 1974), Academic Press, New York, 1975, 177–197 | MR
[10] Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478 | DOI | MR | Zbl
[11] V. T. Shevaldin, Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014