Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 453-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a uniform grid of nodes on the semiaxis $[0;+\infty)$, a generalization is considered of Yu. N. Subbotin's problem of local extremal functional interpolation of numerical sequences $y=\{y_k\}_{k=0}^\infty$ that have bounded generalized finite differences corresponding to a linear differential operator $\mathscr L_n$ of order $n$ and whose first terms $y_0,y_1,\dots$, $y_{s-1}$ are predefined. Here it is required to find an $n$ times differentiable function $f$ such that $f(kh)=y_k$ $(k\in\mathbb Z_+,h>0)$ which has the least norm of the operator $\mathscr L_n$ in the space $L_\infty$. For linear differential operators with constant coefficients for which all roots of the characteristic polynomial are real and pairwise distinct, it is proved that this least norm is finite only in the case of $s\ge n$.
Mots-clés : local interpolation, semiaxis
Keywords: differential operator, generalized finite difference, uniform grid.
@article{MZM_2023_113_3_a11,
     author = {V. T. Shevaldin},
     title = {Local {Extremal} {Interpolation} on the {Semiaxis} with the {Least} {Value} of the {Norm} for a {Linear} {Differential} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--460},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator
JO  - Matematičeskie zametki
PY  - 2023
SP  - 453
EP  - 460
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/
LA  - ru
ID  - MZM_2023_113_3_a11
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator
%J Matematičeskie zametki
%D 2023
%P 453-460
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/
%G ru
%F MZM_2023_113_3_a11
V. T. Shevaldin. Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 453-460. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/

[1] A. Sharma, I. Tsimbalario, “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl

[2] Yu. N. Subbotin, “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167 | MR

[3] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Ekstremalnye svoistva polinomov, Sbornik rabot, Tr. MIAN SSSR, 78, Nauka, M., 1965, 24–42 | MR | Zbl

[4] Yu. N. Subbotin, “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Priblizhenie funktsii v srednem, Sb. rabot, Tr. MIAN SSSR, 88, 1967, 30–60 | MR | Zbl

[5] Yu. N. Subbotin, “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Priblizhenie funktsii i operatorov, Sb. statei, Tr. MIAN SSSR, 138, 1975, 118–173 | MR | Zbl

[6] Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24:3 (2018), 200–225 | DOI | MR

[7] J. Favard, “Sur I'interpolation”, J. Math. Pures Appl. (9), 19 (1940), 281–306 | MR

[8] C. de Boor, “How small can one make the derivatives of an interpolating function?”, J. Approximation Theory, 13:2 (1975), 106–116 | MR

[9] C. de Boor, “A smooth and local interpolant with small $k$-th derivative”, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, 1974), Academic Press, New York, 1975, 177–197 | MR

[10] Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478 | DOI | MR | Zbl

[11] V. T. Shevaldin, Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014