Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 453-460
Voir la notice de l'article provenant de la source Math-Net.Ru
On a uniform grid of nodes on the semiaxis $[0;+\infty)$, a generalization is considered of Yu. N. Subbotin's problem of local extremal functional interpolation of numerical sequences $y=\{y_k\}_{k=0}^\infty$ that have bounded generalized finite differences corresponding to a linear differential operator $\mathscr L_n$ of order $n$ and whose first terms $y_0,y_1,\dots$, $y_{s-1}$ are predefined. Here it is
required to find an $n$ times differentiable function $f$ such that $f(kh)=y_k$ $(k\in\mathbb Z_+,h>0)$ which has the least norm of the
operator $\mathscr L_n$ in the space $L_\infty$. For linear differential operators with constant coefficients for which all roots of the
characteristic polynomial are real and pairwise distinct, it is proved that this least norm is finite only in the case of $s\ge n$.
Mots-clés :
local interpolation, semiaxis
Keywords: differential operator, generalized finite difference, uniform grid.
Keywords: differential operator, generalized finite difference, uniform grid.
@article{MZM_2023_113_3_a11,
author = {V. T. Shevaldin},
title = {Local {Extremal} {Interpolation} on the {Semiaxis} with the {Least} {Value} of the {Norm} for a {Linear} {Differential} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {453--460},
publisher = {mathdoc},
volume = {113},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/}
}
TY - JOUR AU - V. T. Shevaldin TI - Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator JO - Matematičeskie zametki PY - 2023 SP - 453 EP - 460 VL - 113 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/ LA - ru ID - MZM_2023_113_3_a11 ER -
%0 Journal Article %A V. T. Shevaldin %T Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator %J Matematičeskie zametki %D 2023 %P 453-460 %V 113 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/ %G ru %F MZM_2023_113_3_a11
V. T. Shevaldin. Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 453-460. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a11/