Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_3_a10, author = {S. P. Suetin}, title = {Some {Algebraic} {Properties} of {Hermite--Pad\'e} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {448--452}, publisher = {mathdoc}, volume = {113}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/} }
S. P. Suetin. Some Algebraic Properties of Hermite--Pad\'e Polynomials. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 448-452. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/
[1] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR
[2] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR
[3] T. Mano, T. Tsuda, “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285:1–2 (2017), 397–431 | MR
[4] G. V. Chudnovsky, “Rational and Pade approximations to solutions of linear differential equations and the monodromy theory”, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., 126, Springer, Berlin–New York, 1980, 136–169 | DOI | MR | Zbl
[5] G. V. Chudnovsky, “Padé approximation and the Riemann monodromy problem”, Bifurcation Phenomena in Mathematical Physics and Related Topics (Proc. Cargese, 1979), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 54, Reidel, Dordrecht–Boston, Mass., 1980, 449–510 | MR
[6] T. Mano, “Determinant formula for solutions of the Garnier system and Padé approximation”, J. Phys. A, 45:13 (2012), 135206 | DOI | MR
[7] M. Noumi, S. Tsujimoto, Y. Yamada, “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, London, 2013, 463–482 | MR | Zbl
[8] H. Nagao, “The Padé interpolation method applied to additive difference Painlevé equations”, Lett. Math. Phys., 111:6 (2021), paper No 135 | MR
[9] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR
[10] A. I. Aptekarev, V. G. Lysov, “Mnogourovnevaya interpolyatsiya sistemy Nikishina i ogranichennost matrits Yakobi na binarnom dereve”, UMN, 76:4(460) (2021), 179–180 | MR | Zbl
[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | MR
[12] A. P. Starovoitov, N. V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matem. zametki, 110:3 (2021), 424–433 | DOI