Some Algebraic Properties of Hermite--Pad\'e Polynomials
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 448-452
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $[f_0,\dots,f_m]$ be a family of formal series in nonnegative powers of the variable $1/z$ with the condition $f_j(\infty)\ne 0$.
It is assumed that this family is in general position. For the given family of series and $(m+1)$-dimensional multi-indices $\mathbf n_k\in\mathbb N^{m+1}$, $k=0,\dots,m$, constructions are given of Hermite–Padé polynomials of the 1st and 2nd types of degrees
$\le n$ and $\le mn$, respectively, with the following property. Let $M_1(z)$ and $M_2(z)$ be two $(m+1)\times(m+1)$ polynomial matrices,
$M_1(z),M_2(z)\in\operatorname{GL}(m+1,\mathbb C[z])$, generated by Hermite–Padé polynomials of the 1st and 2nd types orresponding to the multi-indices $\mathbf n_k\in\mathbb N^{m+1}$, $k=0,\dots,m$. Then the following identity holds:
$$
M_1(z)M_2^{\mathrm T}(z)\equiv I,
\qquad
M_1(0)=M_2(0)=I,
$$
where $I$ is the identity $(m+1)\times(m+1)$ matrix.
The result is motivated by a number of new applications of the Hermite–Padé polynomials
recently arisen in connection with studies of the monodromy properties of Fuchsian systems of differential equations.
Keywords:
Hermite–Padé polynomials
Mots-clés : monodromy problem.
Mots-clés : monodromy problem.
@article{MZM_2023_113_3_a10,
author = {S. P. Suetin},
title = {Some {Algebraic} {Properties} of {Hermite--Pad\'e} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {448--452},
publisher = {mathdoc},
volume = {113},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/}
}
S. P. Suetin. Some Algebraic Properties of Hermite--Pad\'e Polynomials. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 448-452. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/