Some Algebraic Properties of Hermite--Pad\'e Polynomials
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 448-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $[f_0,\dots,f_m]$ be a family of formal series in nonnegative powers of the variable $1/z$ with the condition $f_j(\infty)\ne 0$. It is assumed that this family is in general position. For the given family of series and $(m+1)$-dimensional multi-indices $\mathbf n_k\in\mathbb N^{m+1}$, $k=0,\dots,m$, constructions are given of Hermite–Padé polynomials of the 1st and 2nd types of degrees $\le n$ and $\le mn$, respectively, with the following property. Let $M_1(z)$ and $M_2(z)$ be two $(m+1)\times(m+1)$ polynomial matrices, $M_1(z),M_2(z)\in\operatorname{GL}(m+1,\mathbb C[z])$, generated by Hermite–Padé polynomials of the 1st and 2nd types orresponding to the multi-indices $\mathbf n_k\in\mathbb N^{m+1}$, $k=0,\dots,m$. Then the following identity holds: $$ M_1(z)M_2^{\mathrm T}(z)\equiv I, \qquad M_1(0)=M_2(0)=I, $$ where $I$ is the identity $(m+1)\times(m+1)$ matrix. The result is motivated by a number of new applications of the Hermite–Padé polynomials recently arisen in connection with studies of the monodromy properties of Fuchsian systems of differential equations.
Keywords: Hermite–Padé polynomials
Mots-clés : monodromy problem.
@article{MZM_2023_113_3_a10,
     author = {S. P. Suetin},
     title = {Some {Algebraic} {Properties} of {Hermite--Pad\'e} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--452},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Some Algebraic Properties of Hermite--Pad\'e Polynomials
JO  - Matematičeskie zametki
PY  - 2023
SP  - 448
EP  - 452
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/
LA  - ru
ID  - MZM_2023_113_3_a10
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Some Algebraic Properties of Hermite--Pad\'e Polynomials
%J Matematičeskie zametki
%D 2023
%P 448-452
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/
%G ru
%F MZM_2023_113_3_a10
S. P. Suetin. Some Algebraic Properties of Hermite--Pad\'e Polynomials. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 448-452. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a10/

[1] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR

[2] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[3] T. Mano, T. Tsuda, “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285:1–2 (2017), 397–431 | MR

[4] G. V. Chudnovsky, “Rational and Pade approximations to solutions of linear differential equations and the monodromy theory”, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., 126, Springer, Berlin–New York, 1980, 136–169 | DOI | MR | Zbl

[5] G. V. Chudnovsky, “Padé approximation and the Riemann monodromy problem”, Bifurcation Phenomena in Mathematical Physics and Related Topics (Proc. Cargese, 1979), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 54, Reidel, Dordrecht–Boston, Mass., 1980, 449–510 | MR

[6] T. Mano, “Determinant formula for solutions of the Garnier system and Padé approximation”, J. Phys. A, 45:13 (2012), 135206 | DOI | MR

[7] M. Noumi, S. Tsujimoto, Y. Yamada, “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, London, 2013, 463–482 | MR | Zbl

[8] H. Nagao, “The Padé interpolation method applied to additive difference Painlevé equations”, Lett. Math. Phys., 111:6 (2021), paper No 135 | MR

[9] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR

[10] A. I. Aptekarev, V. G. Lysov, “Mnogourovnevaya interpolyatsiya sistemy Nikishina i ogranichennost matrits Yakobi na binarnom dereve”, UMN, 76:4(460) (2021), 179–180 | MR | Zbl

[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | MR

[12] A. P. Starovoitov, N. V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matem. zametki, 110:3 (2021), 424–433 | DOI