Spectra of Self-Similar Ergodic Actions
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 273-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

Self-similar constructions of transformations preserving a sigma-finite measure are considered and their properties and the spectra of the induced Gaussian and Poisson dynamical systems are studied. The orthogonal operator corresponding to such a transformation has the property that some power of this operator is a nontrivial direct sum of operators isomorphic to the original one. The following results are obtained. For any subset $M$ of the set of positive integers, in the class of Poisson suspensions, sets of spectral multiplicities of the form $M\cup\{\infty\}$ are realized. A Gaussian flow $S_t$ is presented such that the set of spectral multiplicities of the automorphisms $S_{p^{n}}$ is $\{1,\infty\}$ if $n\le 0$ and $\{p^n,\infty\}$ if $n>0$. A Gaussian flow $T_t$ such that the automorphisms $T_{p^{n}}$ have distinct spectral types for $n\le 0$ but all automorphisms $T_{p^{n}}$, $n>0$, are pairwise isomorphic is constructed.
Keywords: measure-preserving transformation, self-similar construction, weak closure, spectrum, isomorphism of ergodic systems.
@article{MZM_2023_113_2_a9,
     author = {V. V. Ryzhikov},
     title = {Spectra of {Self-Similar} {Ergodic} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a9/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Spectra of Self-Similar Ergodic Actions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 273
EP  - 282
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a9/
LA  - ru
ID  - MZM_2023_113_2_a9
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Spectra of Self-Similar Ergodic Actions
%J Matematičeskie zametki
%D 2023
%P 273-282
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a9/
%G ru
%F MZM_2023_113_2_a9
V. V. Ryzhikov. Spectra of Self-Similar Ergodic Actions. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a9/

[1] V. V. Ryzhikov, “O sokhranyayuschikh meru preobrazovaniyakh ranga odin”, Tr. MMO, 81, no. 2, MTsNMO, M., 2020, 281–318

[2] V. V. Ryzhikov, “Ergodicheskie gomoklinicheskie gruppy, sidonovskie konstruktsii i puassonovskie nadstroiki”, Tr. MMO, 75, no. 1, MTsNMO, M., 2014, 93–103

[3] V. V. Ryzhikov, “Mnozhestva peremeshivaniya dlya zhestkikh preobrazovanii”, Matem. zametki, 110:4 (2021), 576–583 | DOI

[4] V. V. Ryzhikov, “Absolyutnaya nepreryvnost i singulyarnost spektra potokov $T_t\otimes T_{at}$”, Funkts. analiz i ego pril., 56:3 (2022), 88–92 | DOI

[5] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[6] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, URSS, M., 1998

[7] O. N. Ageev, “On spectral invariants in modern ergodic theory”, In Proceedings of the International Congress of Mathematicians, Vol. 2, Eur. Math. Soc., Zürich, 2006, 1641–1653 | MR

[8] A. I. Danilenko, “A survey on spectral multiplicities of ergodic actions”, Ergodic Theory Dynam. Systems, 33:1 (2013), 81–117 | DOI | MR

[9] A. Kanigowski, M. Lemańczyk, “Spectral theory of dynamical systems”, Encyclopedia of Complexity and Systems Science, ed. R. Meyers, Springer, Berlin, 2020 | DOI

[10] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | DOI | MR | Zbl

[11] A. I. Danilenko, V. V. Ryzhikov, “On self-similarities of ergodic flows”, Proc. London Math. Soc. (3), 104:3 (2012), 431–454 | DOI | MR

[12] A. Yu. Kushnir, V. V. Ryzhikov, “Slabye zamykaniya ergodicheskikh deistvii”, Matem. zametki, 100:6 (2016), 847–854 | DOI | MR