Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a class of one-dimensional systems of nonlinear parabolic equations for which the phase dynamics at large time can be described by an ODE with a Lipschitz vector field in $\mathbb R^n$. In the considered case of the Dirichlet boundary value problem, the sufficient conditions for a finite-dimensional reduction turn out to be much wider than the known conditions of this kind for a periodic situation.
Keywords: nonlinear parabolic equations, finite-dimensional dynamics on an attractor, inertial manifold.
@article{MZM_2023_113_2_a8,
     author = {A. V. Romanov},
     title = {Finite-Dimensional {Reduction} of {Systems} of {Nonlinear} {Diffusion} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--272},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 265
EP  - 272
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/
LA  - ru
ID  - MZM_2023_113_2_a8
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
%J Matematičeskie zametki
%D 2023
%P 265-272
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/
%G ru
%F MZM_2023_113_2_a8
A. V. Romanov. Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/

[1] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR

[3] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1997 | DOI | MR

[4] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge, Cambridge Univ. Press, 2001 | MR

[5] A. V. Romanov, “Konechnomernaya predelnaya dinamika dissipativnykh parabolicheskikh uravnenii”, Matem. sb., 191:3 (2000), 99–112 | DOI | MR | Zbl

[6] S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs”, Proc. Roy. Soc. Edinburgh. Ser. A, 144:6 (2014), 1245–1327 | DOI | MR

[7] A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. I. Dirichlet and Neumann boundary conditions”, Comm. Pure Appl. Anal., 16:6 (2017), 2357–2376 | DOI | MR

[8] A. V. Romanov, “Parabolicheskoe uravnenie s nelokalnoi diffuziei bez gladkogo inertsialnogo mnogoobraziya”, Matem. zametki, 96:4 (2014), 578–587 | DOI | MR | Zbl

[9] M. Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory”, J. Math. Anal. Appl., 505:1 (2022), Paper No. 125454 | DOI | MR

[10] A. V. Romanov, “Final dynamics of systems of nonlinear parabolic equations on the circle”, AIMS Math., 6:12 (2021), 13407–13422 | DOI | MR

[11] A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. II. Periodic boundary conditions”, Comm. Pure Appl. Anal., 17:1 (2018), 285–317 | DOI | MR

[12] A. V. Romanov, “Konechnomernost dinamiki na attraktore dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 65:5 (2001), 129–152 | DOI | MR | Zbl

[13] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[14] D. A. Kamaev, “Semeistva ustoichivykh mnogoobrazii invariantnykh mnozhestv sistem parabolicheskikh uravnenii”, UMN, 47:5 (287) (1992), 179–180 | MR | Zbl