Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_2_a8, author = {A. V. Romanov}, title = {Finite-Dimensional {Reduction} of {Systems} of {Nonlinear} {Diffusion} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {265--272}, publisher = {mathdoc}, volume = {113}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/} }
A. V. Romanov. Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/
[1] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl
[2] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR
[3] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1997 | DOI | MR
[4] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge, Cambridge Univ. Press, 2001 | MR
[5] A. V. Romanov, “Konechnomernaya predelnaya dinamika dissipativnykh parabolicheskikh uravnenii”, Matem. sb., 191:3 (2000), 99–112 | DOI | MR | Zbl
[6] S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs”, Proc. Roy. Soc. Edinburgh. Ser. A, 144:6 (2014), 1245–1327 | DOI | MR
[7] A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. I. Dirichlet and Neumann boundary conditions”, Comm. Pure Appl. Anal., 16:6 (2017), 2357–2376 | DOI | MR
[8] A. V. Romanov, “Parabolicheskoe uravnenie s nelokalnoi diffuziei bez gladkogo inertsialnogo mnogoobraziya”, Matem. zametki, 96:4 (2014), 578–587 | DOI | MR | Zbl
[9] M. Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory”, J. Math. Anal. Appl., 505:1 (2022), Paper No. 125454 | DOI | MR
[10] A. V. Romanov, “Final dynamics of systems of nonlinear parabolic equations on the circle”, AIMS Math., 6:12 (2021), 13407–13422 | DOI | MR
[11] A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. II. Periodic boundary conditions”, Comm. Pure Appl. Anal., 17:1 (2018), 285–317 | DOI | MR
[12] A. V. Romanov, “Konechnomernost dinamiki na attraktore dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 65:5 (2001), 129–152 | DOI | MR | Zbl
[13] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl
[14] D. A. Kamaev, “Semeistva ustoichivykh mnogoobrazii invariantnykh mnozhestv sistem parabolicheskikh uravnenii”, UMN, 47:5 (287) (1992), 179–180 | MR | Zbl