Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a class of one-dimensional systems of nonlinear parabolic equations for which the phase dynamics at large time can be described by an ODE with a Lipschitz vector field in $\mathbb R^n$. In the considered case of the Dirichlet boundary value problem, the sufficient conditions for a finite-dimensional reduction turn out to be much wider than the known conditions of this kind for a periodic situation.
Keywords:
nonlinear parabolic equations, finite-dimensional dynamics on an attractor, inertial manifold.
@article{MZM_2023_113_2_a8,
author = {A. V. Romanov},
title = {Finite-Dimensional {Reduction} of {Systems} of {Nonlinear} {Diffusion} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {265--272},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/}
}
A. V. Romanov. Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/