Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a class of one-dimensional systems of nonlinear parabolic equations for which the phase dynamics at large time can be described by an ODE with a Lipschitz vector field in $\mathbb R^n$. In the considered case of the Dirichlet boundary value problem, the sufficient conditions for a finite-dimensional reduction turn out to be much wider than the known conditions of this kind for a periodic situation.
Keywords: nonlinear parabolic equations, finite-dimensional dynamics on an attractor, inertial manifold.
@article{MZM_2023_113_2_a8,
     author = {A. V. Romanov},
     title = {Finite-Dimensional {Reduction} of {Systems} of {Nonlinear} {Diffusion} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--272},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 265
EP  - 272
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/
LA  - ru
ID  - MZM_2023_113_2_a8
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations
%J Matematičeskie zametki
%D 2023
%P 265-272
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/
%G ru
%F MZM_2023_113_2_a8
A. V. Romanov. Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a8/