On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper continues the research of the author begun in 2003–2021. Quantities of the type of modulus of continuity of functions defined on the sphere in the space $S^{(p,q)}(\sigma^{m-1})$ are studied. These quantities are generated by a family of operators of multiplier type. Their equivalence to analogs of $K$-functionals is established.
Keywords:
Fourier–Laplace series, $\psi$-derivative, best approximation, modulus of continuity, $K$-functional.
@article{MZM_2023_113_2_a7,
author = {R. A. Lasuriya},
title = {On {Quantities} of the {Type} of {Modulus} of {Continuity} and {Analogs} of $K${-Functionals} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {251--264},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/}
}
TY - JOUR
AU - R. A. Lasuriya
TI - On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO - Matematičeskie zametki
PY - 2023
SP - 251
EP - 264
VL - 113
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
LA - ru
ID - MZM_2023_113_2_a7
ER -
%0 Journal Article
%A R. A. Lasuriya
%T On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2023
%P 251-264
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
%G ru
%F MZM_2023_113_2_a7
R. A. Lasuriya. On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/