On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the research of the author begun in 2003–2021. Quantities of the type of modulus of continuity of functions defined on the sphere in the space $S^{(p,q)}(\sigma^{m-1})$ are studied. These quantities are generated by a family of operators of multiplier type. Their equivalence to analogs of $K$-functionals is established.
Keywords: Fourier–Laplace series, $\psi$-derivative, best approximation, modulus of continuity, $K$-functional.
@article{MZM_2023_113_2_a7,
     author = {R. A. Lasuriya},
     title = {On {Quantities} of the {Type} of {Modulus} of {Continuity} and {Analogs} of $K${-Functionals} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--264},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 251
EP  - 264
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
LA  - ru
ID  - MZM_2023_113_2_a7
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2023
%P 251-264
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
%G ru
%F MZM_2023_113_2_a7
R. A. Lasuriya. On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/

[1] R. A. Lasuriya, “Approksimatsionnye kharakteristiki prostranstv $S^{(p,q)}(\sigma^m)$ funktsii, zadannykh na sfere”, Ekstremalni zadachi teorii funktsii ta sumizhni pitannya, Pratsi In-tu matem. NAN Ukraini, Kiiv, 2003, 89–115 | MR

[2] R. A. Lasuriya, “Pryamye i obratnye teoremy priblizheniya funktsii, zadannykh na sfere v prostranstve $S^{(p,q)}(\sigma^m)$”, Ukr. matem. zhurn., 59:7 (2007), 901–911 | MR

[3] R. A. Lasuriya, “Pryamye i obratnye teoremy priblizheniya funktsii summami Fure–Laplasa v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 98:4 (2015), 530–543 | DOI | MR

[4] R. A. Lasuriya, “Neravenstva tipa Dzheksona v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 105:5 (2019), 724–739 | DOI | MR

[5] R. A. Lasuriya, “Obratnye teoremy priblizheniya v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 110:1 (2021), 75–89 | DOI

[6] R. A. Lasuriya, “Priblizheniya funktsii na sfere lineinymi metodami”, Ukr. matem. zhurn, 66:11 (2014), 1498–1511 | MR

[7] A. I. Stepanets, Metody teorii priblizhenii, Ch. 1, Pratsi In-tu matem. NAN Ukraini. Matematika ta ii zastosuvannya, 40, In-t matem. NAN Ukraini, Kiiv, 2002 | MR

[8] J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, 39, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1963 | MR

[9] H. Berens, P. L. Butzer, Semigroups of Operators and Approximation, Grundlehren Math. Wiss., 145, Springer, New York, 1967 | MR

[10] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976 | MR

[11] S. Pawelke, “Über die approximationsordnung bei Kugelfunktionen und algebraischen polynomen”, Tohoku Math. J., 24:3 (1972), 473–486 | DOI | MR

[12] M. Wehrens, “Best approximation on the unit sphere in $\mathbb R^k$”, Functional Analysis and Approximation, Birkhäuser, Basel, 1981, 233–245 | MR

[13] G. A. Kalyabin, “O modulyakh gladkosti funktsii, zadannykh na sfere”, Dokl. AN SSSR, 294:5 (1987), 1051–1054 | MR | Zbl

[14] Kh. P. Rustamov, “Ob ekvivalentnosti $K$-funktsionala i modulya gladkosti funktsii na sfere”, Matem. zametki, 52:3 (1992), 123–129 | MR | Zbl

[15] S. Riemenschneider, K. Y. Wang, “Approximation theorems of Jackson type on the sphere”, Adv. Math. (Beijing), 24:2 (1995), 184–186

[16] Y. Wang, F. Cao, Approximation by Semigroups of Spherical Operators, 2011, arXiv: 1105.2393

[17] S. E. Quadih, R. Daher, O. Tyr, F. Saadi, “Equivalense of $K$-functionals and moduli of smoothness generated by the Beltrami–Laplace operator on the spaces $S^{(p,q)}(\sigma^{m-1})$”, Rend. Circ. Mat. Palermo (2), 71 (2021), 445–458 | MR

[18] H. Berens, P. L. Butzer, S. Pawelke, “Limitierungsverfahren von Reihen medrdimensionver Kugelfunktionen und deren Saturationsverhalten”, Publ. Res. Inst. Math. Sci. Ser. A, 4:2 (1968), 201–268 | DOI | MR

[19] S. S. Platonov, “O nekotorykh zadachakh teorii priblizheniya funktsii na kompaktnykh odnorodnykh mnogoobraziyakh”, Matem. sb., 200:6 (2009), 67–108 | DOI | MR | Zbl