On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper continues the research of the author begun in 2003–2021. Quantities of the type of modulus of continuity of functions defined on the sphere in the space $S^{(p,q)}(\sigma^{m-1})$ are studied. These quantities are generated by a family of operators of multiplier type. Their equivalence to analogs of $K$-functionals is established.
Keywords: Fourier–Laplace series, $\psi$-derivative, best approximation, modulus of continuity, $K$-functional.
@article{MZM_2023_113_2_a7,
     author = {R. A. Lasuriya},
     title = {On {Quantities} of the {Type} of {Modulus} of {Continuity} and {Analogs} of $K${-Functionals} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--264},
     year = {2023},
     volume = {113},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 251
EP  - 264
VL  - 113
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
LA  - ru
ID  - MZM_2023_113_2_a7
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2023
%P 251-264
%V 113
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/
%G ru
%F MZM_2023_113_2_a7
R. A. Lasuriya. On Quantities of the Type of Modulus of Continuity and Analogs of $K$-Functionals in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 251-264. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a7/

[1] R. A. Lasuriya, “Approksimatsionnye kharakteristiki prostranstv $S^{(p,q)}(\sigma^m)$ funktsii, zadannykh na sfere”, Ekstremalni zadachi teorii funktsii ta sumizhni pitannya, Pratsi In-tu matem. NAN Ukraini, Kiiv, 2003, 89–115 | MR

[2] R. A. Lasuriya, “Pryamye i obratnye teoremy priblizheniya funktsii, zadannykh na sfere v prostranstve $S^{(p,q)}(\sigma^m)$”, Ukr. matem. zhurn., 59:7 (2007), 901–911 | MR

[3] R. A. Lasuriya, “Pryamye i obratnye teoremy priblizheniya funktsii summami Fure–Laplasa v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 98:4 (2015), 530–543 | DOI | MR

[4] R. A. Lasuriya, “Neravenstva tipa Dzheksona v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 105:5 (2019), 724–739 | DOI | MR

[5] R. A. Lasuriya, “Obratnye teoremy priblizheniya v prostranstvakh $S^{(p,q)}(\sigma^{m-1})$”, Matem. zametki, 110:1 (2021), 75–89 | DOI

[6] R. A. Lasuriya, “Priblizheniya funktsii na sfere lineinymi metodami”, Ukr. matem. zhurn, 66:11 (2014), 1498–1511 | MR

[7] A. I. Stepanets, Metody teorii priblizhenii, Ch. 1, Pratsi In-tu matem. NAN Ukraini. Matematika ta ii zastosuvannya, 40, In-t matem. NAN Ukraini, Kiiv, 2002 | MR

[8] J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de Matemática, 39, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1963 | MR

[9] H. Berens, P. L. Butzer, Semigroups of Operators and Approximation, Grundlehren Math. Wiss., 145, Springer, New York, 1967 | MR

[10] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976 | MR

[11] S. Pawelke, “Über die approximationsordnung bei Kugelfunktionen und algebraischen polynomen”, Tohoku Math. J., 24:3 (1972), 473–486 | DOI | MR

[12] M. Wehrens, “Best approximation on the unit sphere in $\mathbb R^k$”, Functional Analysis and Approximation, Birkhäuser, Basel, 1981, 233–245 | MR

[13] G. A. Kalyabin, “O modulyakh gladkosti funktsii, zadannykh na sfere”, Dokl. AN SSSR, 294:5 (1987), 1051–1054 | MR | Zbl

[14] Kh. P. Rustamov, “Ob ekvivalentnosti $K$-funktsionala i modulya gladkosti funktsii na sfere”, Matem. zametki, 52:3 (1992), 123–129 | MR | Zbl

[15] S. Riemenschneider, K. Y. Wang, “Approximation theorems of Jackson type on the sphere”, Adv. Math. (Beijing), 24:2 (1995), 184–186

[16] Y. Wang, F. Cao, Approximation by Semigroups of Spherical Operators, 2011, arXiv: 1105.2393

[17] S. E. Quadih, R. Daher, O. Tyr, F. Saadi, “Equivalense of $K$-functionals and moduli of smoothness generated by the Beltrami–Laplace operator on the spaces $S^{(p,q)}(\sigma^{m-1})$”, Rend. Circ. Mat. Palermo (2), 71 (2021), 445–458 | MR

[18] H. Berens, P. L. Butzer, S. Pawelke, “Limitierungsverfahren von Reihen medrdimensionver Kugelfunktionen und deren Saturationsverhalten”, Publ. Res. Inst. Math. Sci. Ser. A, 4:2 (1968), 201–268 | DOI | MR

[19] S. S. Platonov, “O nekotorykh zadachakh teorii priblizheniya funktsii na kompaktnykh odnorodnykh mnogoobraziyakh”, Matem. sb., 200:6 (2009), 67–108 | DOI | MR | Zbl