Asymptotics of Solutions of Two-Term Differential Equations
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 217-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas for the fundamental solution system as $x\to\infty$ are obtained for equations of the form $$ l(y):=(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y,\qquad x\in[1,\infty), $$ where $p$ is a locally integrable function admitting the representation $$ p(x)=(1+r(x))^{-1},\qquad r\in L^1 [1,\infty), $$ and $q$ is a distribution representable for some given $k$, $0\le k\le n$, as $q=\sigma^{(k)}$, where \begin{alignat*}{2} \sigma\in L^1[1,\infty)\qquad \text{if }k, \\ |\sigma|(1+|r|)(1+|\sigma|)\in L^1[1,\,\infty) \qquad \text{if }k=n. \end{alignat*} Similar results are obtained for the equations $l(y)=\lambda y$ whose coefficients $p(x)$ and $q(x)$ admit the following representation for a given $k$, $0\le k\le n$: $$ p(x)=x^{2n+\nu}(1+r(x))^{-1},\qquad q=\sigma^{(k)},\quad \sigma(x)=x^{k+\nu}(\beta+s(x)), $$ where the functions $r$ and $s$ satisfy certain integral decay conditions. We also obtain theorems on the deficiency indices of the minimal symmetric operator generated by the differential expression $l(y)$ (with real functions $p$ and $q$) as well as theorems on the spectra of the corresponding self-adjoint extensions.
Keywords: differential operators with distribution coefficients, quasiderivatives, asymptotics of solutions of differential equations, deficiency indices of a differential operator.
@article{MZM_2023_113_2_a5,
     author = {N. N. Konechnaja and K. A. Mirzoev and A. A. Shkalikov},
     title = {Asymptotics of {Solutions} of {Two-Term} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--235},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
AU  - A. A. Shkalikov
TI  - Asymptotics of Solutions of Two-Term Differential Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 217
EP  - 235
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/
LA  - ru
ID  - MZM_2023_113_2_a5
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%A A. A. Shkalikov
%T Asymptotics of Solutions of Two-Term Differential Equations
%J Matematičeskie zametki
%D 2023
%P 217-235
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/
%G ru
%F MZM_2023_113_2_a5
N. N. Konechnaja; K. A. Mirzoev; A. A. Shkalikov. Asymptotics of Solutions of Two-Term Differential Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 217-235. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/