Asymptotics of Solutions of Two-Term Differential Equations
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 217-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas for the fundamental solution system as $x\to\infty$ are obtained for equations of the form $$ l(y):=(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y,\qquad x\in[1,\infty), $$ where $p$ is a locally integrable function admitting the representation $$ p(x)=(1+r(x))^{-1},\qquad r\in L^1 [1,\infty), $$ and $q$ is a distribution representable for some given $k$, $0\le k\le n$, as $q=\sigma^{(k)}$, where \begin{alignat*}{2} \sigma\in L^1[1,\infty)\qquad \text{if }k, \\ |\sigma|(1+|r|)(1+|\sigma|)\in L^1[1,\,\infty) \qquad \text{if }k=n. \end{alignat*} Similar results are obtained for the equations $l(y)=\lambda y$ whose coefficients $p(x)$ and $q(x)$ admit the following representation for a given $k$, $0\le k\le n$: $$ p(x)=x^{2n+\nu}(1+r(x))^{-1},\qquad q=\sigma^{(k)},\quad \sigma(x)=x^{k+\nu}(\beta+s(x)), $$ where the functions $r$ and $s$ satisfy certain integral decay conditions. We also obtain theorems on the deficiency indices of the minimal symmetric operator generated by the differential expression $l(y)$ (with real functions $p$ and $q$) as well as theorems on the spectra of the corresponding self-adjoint extensions.
Keywords: differential operators with distribution coefficients, quasiderivatives, asymptotics of solutions of differential equations, deficiency indices of a differential operator.
@article{MZM_2023_113_2_a5,
     author = {N. N. Konechnaja and K. A. Mirzoev and A. A. Shkalikov},
     title = {Asymptotics of {Solutions} of {Two-Term} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--235},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
AU  - A. A. Shkalikov
TI  - Asymptotics of Solutions of Two-Term Differential Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 217
EP  - 235
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/
LA  - ru
ID  - MZM_2023_113_2_a5
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%A A. A. Shkalikov
%T Asymptotics of Solutions of Two-Term Differential Equations
%J Matematičeskie zametki
%D 2023
%P 217-235
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/
%G ru
%F MZM_2023_113_2_a5
N. N. Konechnaja; K. A. Mirzoev; A. A. Shkalikov. Asymptotics of Solutions of Two-Term Differential Equations. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 217-235. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a5/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[2] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems, Clarendon Press, Oxford, 1989 | MR

[3] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[4] C. A. Orlov, “Ob indekse defekta lineinykh differentsialnykh operatorov”, Dokl. AN SSSR, 92:3 (1953), 483–486 | MR

[5] R. B. Paris, A. D. Wood, “On the $\mathscr L_2(I)$ nature of solutions of $n$-th order symmetric differential operator and McLeod's conjecture”, Proc. Roy. Soc. Edinburg Sect. A, 90 (1981), 209–236 | DOI | MR

[6] R. M. Kauffman, “On the limit-$n$ classification of ordinary differential operators with positive coefficients”, Proc. London Math. Soc. (3), 3:35 (1977), 496–526 | DOI | MR

[7] R. B. Paris A. D. Wood, Asymptotics of High Order Differential Equations, Pitman Res. Notes in Math. Ser., 129, Longman Sci. Tech., Harlow, 1986 | MR

[8] K. A. Mirzoev, “O teoreme Orlova ob indekse defekta differentsialnykh operatorov”, Dokl. AN, 380:5 (2001), 591–595 | MR

[9] N. N. Konechnaya, K. A. Mirzoev, A. A. Shkalikov, “Ob asimptotike reshenii dvuchlennykh differentsialnykh uravnenii s singulyarnymi koeffitsientami”, Matem. zametki, 104:2 (2018), 231–242 | DOI | MR

[10] N. N. Konechnaya, K. A. Mirzoev, “Glavnyi chlen asimptotiki reshenii lineinykh differentsialnykh uravnenii s koeffitsientami-raspredeleniyami pervogo poryadka”, Matem. zametki, 106:1 (2019), 74–83 | DOI | MR

[11] N. N. Konechnaya, K. A. Mirzoev, “Ob asimptotike reshenii lineinykh differentsialnykh uravnenii nechetnogo poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 1, 23–28 | MR | Zbl

[12] K. A. Mirzoev, A. A. Shkalikov, “Differentsialnye operatory chetnogo poryadka s koeffitsientami-raspredeleniyami”, Matem. zametki, 99:5 (2016), 788–793 | DOI | MR

[13] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[14] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212

[15] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33 (2013), 467–563 | DOI | MR

[16] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, MTsNMO, M., 2014, 335–359

[17] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl

[18] W. N. Everitt, L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, Amer. Math. Soc., Providence, RI, 1999 | MR

[19] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 2, Vischa shkola, Kharkov, 1978 | MR