System of Inequalities in Continued Fractions from Finite Alphabets
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 197-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of two inequalities $$ \biggl|\frac yx-\psi_1\biggr|\le \varepsilon_1\qquad \text{and} \qquad \biggl\|\frac{ay}x-\psi_2\biggr\|\le \varepsilon_2 $$ is considered, and an upper bound for the number of its solutions is established. Here $a$, $\psi_1$, $\psi_2$, $\varepsilon_1$, and $\varepsilon_2$ are given real numbers, $\varepsilon_1$ and $\varepsilon_1$ are positive and arbitrarily small, $\|\cdot\|$ is the distance to the nearest integer, and $x$ and $y$ are coprime variables from given intervals such that the partial quotients of the continued fraction expansion of $y/x$ belong to a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$.
Keywords: inequality, distance to the nearest integer, continued fraction, finite alphabet.
@article{MZM_2023_113_2_a3,
     author = {I. D. Kan and G. Kh. Solov'ev},
     title = {System of {Inequalities} in {Continued} {Fractions} from {Finite} {Alphabets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--206},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/}
}
TY  - JOUR
AU  - I. D. Kan
AU  - G. Kh. Solov'ev
TI  - System of Inequalities in Continued Fractions from Finite Alphabets
JO  - Matematičeskie zametki
PY  - 2023
SP  - 197
EP  - 206
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/
LA  - ru
ID  - MZM_2023_113_2_a3
ER  - 
%0 Journal Article
%A I. D. Kan
%A G. Kh. Solov'ev
%T System of Inequalities in Continued Fractions from Finite Alphabets
%J Matematičeskie zametki
%D 2023
%P 197-206
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/
%G ru
%F MZM_2023_113_2_a3
I. D. Kan; G. Kh. Solov'ev. System of Inequalities in Continued Fractions from Finite Alphabets. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 197-206. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/

[1] I. D. Kan, “Lineinye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 103:6 (2018), 853–862 | DOI | MR

[2] I. D. Kan, V. A. Odnorob, “Lineinye neodnorodnye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 112:3 (2022), 412–425 | DOI

[3] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR

[4] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180 (2014), 137–196 | DOI | MR

[5] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546

[6] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168

[7] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl

[8] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR

[9] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR

[10] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl

[11] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR

[12] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Trudy MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR

[13] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR

[14] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI

[15] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI

[16] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funkts. analiz i ego pril., 56:1 (2022), 66–80 | DOI

[17] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR

[18] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1994 | MR

[19] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl

[20] Yu. V. Nesterenko, Teoriya chisel, Akademiya, M., 2008

[21] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR

[22] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR