Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_2_a3, author = {I. D. Kan and G. Kh. Solov'ev}, title = {System of {Inequalities} in {Continued} {Fractions} from {Finite} {Alphabets}}, journal = {Matemati\v{c}eskie zametki}, pages = {197--206}, publisher = {mathdoc}, volume = {113}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/} }
I. D. Kan; G. Kh. Solov'ev. System of Inequalities in Continued Fractions from Finite Alphabets. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 197-206. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a3/
[1] I. D. Kan, “Lineinye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 103:6 (2018), 853–862 | DOI | MR
[2] I. D. Kan, V. A. Odnorob, “Lineinye neodnorodnye sravneniya v tsepnykh drobyakh iz konechnykh alfavitov”, Matem. zametki, 112:3 (2022), 412–425 | DOI
[3] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR
[4] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180 (2014), 137–196 | DOI | MR
[5] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546
[6] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168
[7] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[8] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR
[9] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR
[10] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[11] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR
[12] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Trudy MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR
[13] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR
[14] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI
[15] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI
[16] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funkts. analiz i ego pril., 56:1 (2022), 66–80 | DOI
[17] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR
[18] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1994 | MR
[19] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl
[20] Yu. V. Nesterenko, Teoriya chisel, Akademiya, M., 2008
[21] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres, de Gruyter, Berlin, 1989, 371–385 | MR
[22] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR