Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 295-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the existence, the boundedness, the asymptotic behavior, and the oscillatory behavior of the positive solutions of the fuzzy difference equation $$ z_{n+1}=A+\frac{B}{z_{n-m}}\,, $$ where $n\in\mathbb{N}_{0}=\mathbb{N}\cup\{0\}$, $(z_{n})$ is a sequence of positive fuzzy numbers, $A$, $B$, and the initial conditions $z_{-j}$, $j=1, 2,\dots,m$, are positive fuzzy numbers, and $m$ is a positive integer.
Keywords: fuzzy number, fuzzy difference equations, boundedness
Mots-clés : $\alpha$-cut, convergence.
@article{MZM_2023_113_2_a11,
     author = {I. Yalcinkaya and H. El-Metwally and D. T. Tollu and H. Ahmad},
     title = {Behavior of {Solutions} to the {Fuzzy} {Difference} {Equation} $z_{n+1}=A+\dfrac{B}{z_{n-m}}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--307},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a11/}
}
TY  - JOUR
AU  - I. Yalcinkaya
AU  - H. El-Metwally
AU  - D. T. Tollu
AU  - H. Ahmad
TI  - Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 295
EP  - 307
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a11/
LA  - ru
ID  - MZM_2023_113_2_a11
ER  - 
%0 Journal Article
%A I. Yalcinkaya
%A H. El-Metwally
%A D. T. Tollu
%A H. Ahmad
%T Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$
%J Matematičeskie zametki
%D 2023
%P 295-307
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a11/
%G ru
%F MZM_2023_113_2_a11
I. Yalcinkaya; H. El-Metwally; D. T. Tollu; H. Ahmad. Behavior of Solutions to the Fuzzy Difference Equation $z_{n+1}=A+\dfrac{B}{z_{n-m}}$. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a11/

[1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992 | MR

[2] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999 | MR

[3] E. C. Pielou, Population and Community Ecology: Principles and Methods, CRC Press, London, 1974

[4] V. A. Beserskii, E. P. Popov, Teoriya sistem avtomaticheskogo regulirovaniya, Nauka, M., 1966 | MR

[5] E. Deeba, A. De Korvin, “Analysis by fuzzy difference equations of a model of CO$_{2}$ level in blood”, Appl. Math. Lett., 12 (1999), 33–40 | DOI | MR

[6] G. Papaschinopoulos, B. K. Papadopoulos, “On the fuzzy difference equation $x_{n+1}=A+B/x_{n}$”, Soft Computing, 6 (2002), 456–461 | DOI

[7] A. Khastan, Z. Alijani, “On the new solutions to the fuzzy difference equation $x_{n+1}=A+B/x_{n}$”, Fuzzy Sets and Systems, 358 (2019), 64–83 | DOI | MR

[8] E. Hatir, T. Mansour, I. Yalcinkaya, “On a fuzzy difference equation”, Util. Math., 93 (2014), 135–151 | MR

[9] K. A. Chrysafis, B. K. Papadopoulos, G. Papaschinopoulos, “On the fuzzy difference equations of finance”, Fuzzy Sets and Systems, 159 (2008), 3259–3270 | DOI | MR

[10] E. Deeba, A. De Korvin, E. L. Koh, “A fuzzy difference equation with an application”, J. Differ. Equations Appl., 2 (1996), 365–374 | DOI | MR

[11] G. Papaschinopoulos, B. K. Papadopoulos, “On the fuzzy difference equation $x_{n+1}=A+x_{n}/x_{n-m}$”, Fuzzy Sets and Systems, 129 (2002), 73–81 | DOI | MR

[12] G. Papaschinopoulos, G. Stefanidou, “Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation”, Fuzzy Sets and Systems, 140 (2003), 523–539 | DOI | MR

[13] G. Stefanidou, G. Papaschinopoulos, “A fuzzy difference equation of a rational form”, J. Nonlinear Math. Phys., 12 (2005), 300–315 | DOI | MR

[14] M. Puri, D. Ralescu, “Differentials of fuzzy functions”, J. Math. Anal. Appl., 91:2 (1983), 552–558 | DOI | MR

[15] G. Rahman, Q. Din, F. Faizullah, F. M. Khan, “Qualitative behavior of a second-order fuzzy difference equation”, J. Intelligent Fuzzy Systems, 34 (2018), 745–753 | DOI

[16] C. Wu, B. Zhang, “Embedding problem of noncompact fuzzy number space $E^{\sim}$ (I)”, Fuzzy Sets and Systems, 105 (1999), 165–169 | DOI | MR

[17] İ. Yalçınkaya, N. Atak, D. T. Tollu, “On a third-order fuzzy difference equation”, J. Prime Res. Math., 17:1 (2021), 59–69 | MR

[18] İ. Yalçınkaya, V. Çalışkan, D. T. Tollu, “On a nonlinear fuzzy difference equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 71:1 (2022), 68–78 | MR

[19] Q. Zhang, L. Yang, D. Liao, “Behavior of solutions to a fuzzy nonlinear difference equation”, Iran. J. Fuzzy Syst., 9 (2012), 1–12 | MR

[20] Q. Zhang, L. Yang, D. Liao, “On first order fuzzy Riccati difference equation”, Inform. Sci., 270 (2014), 226–236 | DOI | MR

[21] S. Heilpern, “Fuzzy mappings and fixed point theorem”, J. Math. Anal. Appl., 83 (1981), 566–569 | DOI | MR

[22] G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, Upper Saddle River, NJ, 1995 | MR

[23] C. V. Negoita, D. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Birkhauser, Besel, 1975 | MR

[24] H. T. Nguyen, “A note on extension principle for fuzzy sets”, J. Math. Anal. Appl., 64:2 (1978), 369–380 | DOI | MR

[25] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, New York, 2013 | MR

[26] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets, World Sci., Singapore, 1994 | MR

[27] M. R. S. Kulenović, G. Ladas, Dynamics of Second Order Rational Difference Equations. With Open Problems and Conjectures, CRC Press, Boca Raton, FL, 2001 | MR