On the Homogeneity of Products of Topological Spaces
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Three intermediate classes $\mathscr R_1\subset\mathscr R_2\subset\mathscr R_3$ between the classes of $F$-spaces and of $\beta\omega$-spaces are considered. It is proved that products of infinite $\mathscr R_2$-spaces and, under the assumption of the existence of a discrete ultrafilter, of infinite $\beta\omega$-spaces are never homogeneous. Under additional set-theoretic assumptions, the metrizability of any compact subspace of a countable product of homogeneous $\beta\omega$-spaces is proved.
Mots-clés : $\mathscr R_1$-space, $\mathscr R_2$-space, $\mathscr R_3$-space, NNCPP$_\kappa$
Keywords: Rudin–Keisler order, Rudin–Blass order, $\beta\omega$-space, homogeneity of products of topological spaces.
@article{MZM_2023_113_2_a1,
     author = {A. Yu. Groznova},
     title = {On the {Homogeneity} of {Products} of {Topological} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Groznova
TI  - On the Homogeneity of Products of Topological Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 171
EP  - 181
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/
LA  - ru
ID  - MZM_2023_113_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Groznova
%T On the Homogeneity of Products of Topological Spaces
%J Matematičeskie zametki
%D 2023
%P 171-181
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/
%G ru
%F MZM_2023_113_2_a1
A. Yu. Groznova. On the Homogeneity of Products of Topological Spaces. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/