On the Homogeneity of Products of Topological Spaces
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181
Voir la notice de l'article provenant de la source Math-Net.Ru
Three intermediate classes $\mathscr R_1\subset\mathscr R_2\subset\mathscr R_3$ between the classes of $F$-spaces and of $\beta\omega$-spaces are considered. It is proved that products of infinite $\mathscr R_2$-spaces and, under the assumption of the existence of a discrete ultrafilter, of infinite $\beta\omega$-spaces are never homogeneous. Under additional set-theoretic assumptions, the metrizability of any compact subspace of a countable product of homogeneous $\beta\omega$-spaces is proved.
Mots-clés :
$\mathscr R_1$-space, $\mathscr R_2$-space, $\mathscr R_3$-space, NNCPP$_\kappa$
Keywords: Rudin–Keisler order, Rudin–Blass order, $\beta\omega$-space, homogeneity of products of topological spaces.
Keywords: Rudin–Keisler order, Rudin–Blass order, $\beta\omega$-space, homogeneity of products of topological spaces.
@article{MZM_2023_113_2_a1,
author = {A. Yu. Groznova},
title = {On the {Homogeneity} of {Products} of {Topological} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {171--181},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/}
}
A. Yu. Groznova. On the Homogeneity of Products of Topological Spaces. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/