On the Homogeneity of Products of Topological Spaces
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three intermediate classes $\mathscr R_1\subset\mathscr R_2\subset\mathscr R_3$ between the classes of $F$-spaces and of $\beta\omega$-spaces are considered. It is proved that products of infinite $\mathscr R_2$-spaces and, under the assumption of the existence of a discrete ultrafilter, of infinite $\beta\omega$-spaces are never homogeneous. Under additional set-theoretic assumptions, the metrizability of any compact subspace of a countable product of homogeneous $\beta\omega$-spaces is proved.
Mots-clés : $\mathscr R_1$-space, $\mathscr R_2$-space, $\mathscr R_3$-space, NNCPP$_\kappa$
Keywords: Rudin–Keisler order, Rudin–Blass order, $\beta\omega$-space, homogeneity of products of topological spaces.
@article{MZM_2023_113_2_a1,
     author = {A. Yu. Groznova},
     title = {On the {Homogeneity} of {Products} of {Topological} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Groznova
TI  - On the Homogeneity of Products of Topological Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 171
EP  - 181
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/
LA  - ru
ID  - MZM_2023_113_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Groznova
%T On the Homogeneity of Products of Topological Spaces
%J Matematičeskie zametki
%D 2023
%P 171-181
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/
%G ru
%F MZM_2023_113_2_a1
A. Yu. Groznova. On the Homogeneity of Products of Topological Spaces. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a1/

[1] W. Rudin, “Homogeneity problems in the theory of Čech compactifications”, Duke Math. J., 23:3 (1956), 409–419 | DOI | MR

[2] L. Gillman, M. Henriksen, “Concerning rings of continuous functions”, Trans. Amer. Math. Soc., 77, 340–362 | DOI | MR

[3] Z. Frolík, “Sums of ultrafilters”, Bull. Amer. Math. Soc., 73 (1967), 87–91 | DOI | MR

[4] P. T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982 | MR

[5] Z. Frolík, “Homogeneity problems for extremally disconnected spaces”, Comment. Math. Univ. Carol., 8:4 (1967), 757–763 | MR

[6] A. Arhangelskii, “Groupes topologiques extremalement discontinus”, C. R. Acad. Sci. Paris, 265 (1967), 822–825 | MR

[7] E. K. van Douwen, “Homogeneity of $\beta G$ if $G$ is a topological group”, Collect. Math., 41 (1979), 193–199 | MR

[8] E. Reznichenko, “Homogeneous subspaces of products of extremally disconnected spaces”, Topology Appl., 284 (2020), 107403 | DOI | MR

[9] A. M. Gleason, “Projective topological spaces”, Illinois J. Math., 2 (1958), 482–489 | MR

[10] V. I. Ponomarev, “Ob absolyute topologicheskogo prostranstva”, Dokl. AN SSSR, 149:1 (1963), 26–29 | MR | Zbl

[11] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer, New York, 1960 | MR

[12] K. Kunen, “Large homogeneous compact spaces”, Open Problems in Topology, North-Holland, Amsterdam, 1990, 262–270 | MR

[13] E. K. van Douwen, Prime Mappings, Number of Factors and Binary Operations, Dissertationes Math., 119, PWN, Warszawa, 1981 | MR

[14] W. W. Comfort, “Ultrafiters: some old and some new results”, Bull. Amer. Math. Soc., 83 (1977), 417–455 | DOI | MR

[15] M. Husek, “Continuous mappings on subspaces of products”, Symposia Mathematica, Vol. 17, Academic Press, London, 1976, 25–41 | MR

[16] A. Yu. Groznova, O. V. Sipacheva, “Novye svoistva topologicheskikh prostranstv, obobschayuschie ekstremalnuyu nesvyaznost”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2022 (to appear)

[17] J. E. Baumgartner, “Ultrafilters on $\omega$”, J. Symb. Logic, 60 (1995), 624–639 | DOI | MR

[18] A. Yu. Groznova, O. V. Sipacheva, Discrete ultrafilters and homogeneity of product spaces, 2022, arXiv: 2205.11978

[19] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[20] K. Kunen, “Weak $P$-points in $N^*$”, Topology, Vol. 2, Coll. Math. Soc. János Bolyai., 23, North-Holland, Amsterdam, 1980, 741–749 | MR

[21] V. I Malykhin, “$\beta\mathbb N$ is prime”, Bull. Acad. Polon. Sci. Sér. Math., 27 (1978), 295–297 | MR

[22] A. Blass, “The Rudin–Keisler ordering of $P$-points”, Trans. Amer. Math. Soc., 179 (1973), 145–166 | MR

[23] W. Comfort, S. Negrepontis, The Theory of Ultrafilters, Grundlehren Math. Wiss., 211, Springer, Berlin, 1974 | MR