Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170
Voir la notice de l'article provenant de la source Math-Net.Ru
B. Ya. Levin has proved that the zero set of a sine type function can be represented as a union of finitely many separated sets, which is an important result in the theory of exponential Riesz bases. In the present paper, we extend Levin's result to a more general class of entire functions $F(z)$ with zeros in a strip $\sup|{\operatorname{Im}\lambda_n}|\infty$ such that $|F(x)|^2$ satisfies the Helson–Szegő condition. Moreover, we show that instead of the last condition one can require that $\log|F(x)|$ belongs to the BMO class.
Keywords:
Helson–Szegő condition, upper uniform density, exponential Riesz bases.
@article{MZM_2023_113_2_a0,
author = {S. A. Avdonin and S. A. Ivanov},
title = {Density of {Zeros} of the {Cartwright} {Class} {Functions} and the {Helson--Szeg\H{o}} {Type} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--170},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/}
}
TY - JOUR
AU - S. A. Avdonin
AU - S. A. Ivanov
TI - Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
JO - Matematičeskie zametki
PY - 2023
SP - 163
EP - 170
VL - 113
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/
LA - ru
ID - MZM_2023_113_2_a0
ER -
S. A. Avdonin; S. A. Ivanov. Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/