Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

B. Ya. Levin has proved that the zero set of a sine type function can be represented as a union of finitely many separated sets, which is an important result in the theory of exponential Riesz bases. In the present paper, we extend Levin's result to a more general class of entire functions $F(z)$ with zeros in a strip $\sup|{\operatorname{Im}\lambda_n}|\infty$ such that $|F(x)|^2$ satisfies the Helson–Szegő condition. Moreover, we show that instead of the last condition one can require that $\log|F(x)|$ belongs to the BMO class.
Keywords: Helson–Szegő condition, upper uniform density, exponential Riesz bases.
@article{MZM_2023_113_2_a0,
     author = {S. A. Avdonin and S. A. Ivanov},
     title = {Density of {Zeros} of the {Cartwright} {Class} {Functions} and the {Helson--Szeg\H{o}} {Type} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - S. A. Ivanov
TI  - Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
JO  - Matematičeskie zametki
PY  - 2023
SP  - 163
EP  - 170
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/
LA  - ru
ID  - MZM_2023_113_2_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A S. A. Ivanov
%T Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
%J Matematičeskie zametki
%D 2023
%P 163-170
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/
%G ru
%F MZM_2023_113_2_a0
S. A. Avdonin; S. A. Ivanov. Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/

[1] R. E. A. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., Providence, RI, 1934 | MR

[2] S. A. Avdonin, S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge, 1995 | MR

[3] S. V. Khrushchev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and reproducing kernels”, Complex Analysis and Spectral Theory, Lecture Notes in Math., 864, Springer, Berlin, 1981, 214–335 | MR

[4] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[5] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego, CA, 2001 | MR

[6] B. Ya. Levin, “O bazisakh Rissa iz pokazatelnykh funktsii v ${L}^2$”, Zapiski matem. otdeleniya fiz. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 27, Kharkov, 1961, 39–48

[7] B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc., Providence. RI, 1996 | MR

[8] B. S. Pavlov, “Bazisnost sistemy eksponent i uslovie Makenkhoupta”, Dokl. AN SSSR, 247:1 (1979), 37–40 | MR | Zbl

[9] N. K. Nikolskii, “Bazisy iz eksponent i znachenii vosproizvodyaschikh yader”, Dokl. AN SSSR, 252:6 (1980), 1316–1320 | MR | Zbl

[10] A. M. Minkin, “Otrazhenie pokazatelei i bezuslovnye bazisy iz eksponent”, Algebra i analiz, 3:5 (1991), 109–134 | MR | Zbl

[11] Yu. Lyubarskii, K. Seip, “Complete interpolating sequences for Paley–Wiener spaces and Muckenhoupt's $(A_p)$ condition”, Rev. Mat. Iberoam., 13:2 (1997), 361–376 | DOI | MR

[12] V. D. Golovin, “O biortogonalnykh razlozheniyakh v $\ell^2$ po lineinym kombinatsiyam pokazatelnykh funktsii”, Zapiski matem. otdeleniya fiz. fak-ta Kharkovskogo un-ta i Kharkovskogo matem. ob-va, 30, Kharkov, 1964, 18–24

[13] S. A. Avdonin, S. A. Ivanov, “Bazisy Rissa iz eksponent i razdelennykh raznostei”, Algebra i analiz, 13:3 (2001), 1–17 | MR | Zbl

[14] S. A. Avdonin, W. Moran, “Ingham type inequalities and Riesz bases of divided differences”, Int. J. Appl. Math. Comput. Sci., 11:4 (2001), 101–118 | MR

[15] S. A. Avdonin, W. Moran, “Simultaneous control problems for systems of elastic strings and beams”, Systems Control Lett., 44:2 (2001), 147–155 | DOI | MR

[16] V. V. Vlasov, S. A. Ivanov, “Otsenki reshenii uravnenii s posledeistviem v shkale prostranstv Soboleva i bazis iz razdelennykh raznostei”, Algebra i analiz, 15:4 (2003), 115–141 | MR | Zbl

[17] K. Seip, “On the connection between exponential bases and certain related sequences in $L^2 (-\pi,\pi)$”, J. Funct. Anal., 130 (1995), 131–160 | DOI | MR

[18] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl

[19] J. Mashreghi, “Hilbert transform of $\log|f|$”, Proc. Amer. Math. Soc., 130:3, 683–688 | DOI | MR