Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170

Voir la notice de l'article provenant de la source Math-Net.Ru

B. Ya. Levin has proved that the zero set of a sine type function can be represented as a union of finitely many separated sets, which is an important result in the theory of exponential Riesz bases. In the present paper, we extend Levin's result to a more general class of entire functions $F(z)$ with zeros in a strip $\sup|{\operatorname{Im}\lambda_n}|\infty$ such that $|F(x)|^2$ satisfies the Helson–Szegő condition. Moreover, we show that instead of the last condition one can require that $\log|F(x)|$ belongs to the BMO class.
Keywords: Helson–Szegő condition, upper uniform density, exponential Riesz bases.
@article{MZM_2023_113_2_a0,
     author = {S. A. Avdonin and S. A. Ivanov},
     title = {Density of {Zeros} of the {Cartwright} {Class} {Functions} and the {Helson--Szeg\H{o}} {Type} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - S. A. Ivanov
TI  - Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
JO  - Matematičeskie zametki
PY  - 2023
SP  - 163
EP  - 170
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/
LA  - ru
ID  - MZM_2023_113_2_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A S. A. Ivanov
%T Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition
%J Matematičeskie zametki
%D 2023
%P 163-170
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/
%G ru
%F MZM_2023_113_2_a0
S. A. Avdonin; S. A. Ivanov. Density of Zeros of the Cartwright Class Functions and the Helson--Szeg\H{o} Type Condition. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a0/