Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 109-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. For every element $x\in G$, the set $\{x^g=g^{-1}xg: g\in G\}$ is called the conjugacy class of $x$ in $G$ and is denoted by $x^G$. The conjugacy class size of $x$ in $G$ is denoted by $|x^G|$ and is equal to $|G:C_G(x)|$. An element $y$ of $G$ is said to be primary or biprimary if the order of $y$ is divisible by exactly one or two distinct primes. For a positive integer $n$ and a prime $p$, if $e>0$ is an integer such that $p^e$ divides $n$ and $p^{e+1}$ does not divide $n$, then $p^e$ is called the $p$-part of $n$. Let $p$ be a prime divisor of $p$ such that $(p-1,|G|)=1$. We prove that $G$ is solvable and $p$-nilpotent if the conjugacy sizes of all noncentral primary and biprimary elements in $G$ have the same $p$-part. On the other hand, suppose that $N$ is a normal subgroup of $G$; we write $\operatorname{cs}_G(N)=\{|x^G|:x\in N\}$. Suppose that $\operatorname{cs}_G(N)=\{1,n_1,n_2,\dots,n_t\}$, where $1$. Denote by $$ M_N(G)=\langle x^G:x\in N,\,x^G=1\text{ or }n_1\rangle $$ a subgroup of $G$. We prove that if $C_G(F(G))\le F(G)$ and $[x,F(G)]$ is a normal subset of $F(G)$ for every $x\in N$ with $|x^G|=1$ or $n_1$, then $M_N(G)$ is a nilpotent group with nilpotency class at most 2.
Keywords: conjugacy class size; solvable group; $p$-nilpotent group; nilpotency class.
@article{MZM_2023_113_1_a8,
     author = {Ruifang Chen and Xianhe Zhao},
     title = {Influence of {Conjugacy} {Class} {Sizes} of {Some} {Elements} on the {Structure} of a {Finite} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/}
}
TY  - JOUR
AU  - Ruifang Chen
AU  - Xianhe Zhao
TI  - Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
JO  - Matematičeskie zametki
PY  - 2023
SP  - 109
EP  - 117
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/
LA  - ru
ID  - MZM_2023_113_1_a8
ER  - 
%0 Journal Article
%A Ruifang Chen
%A Xianhe Zhao
%T Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
%J Matematičeskie zametki
%D 2023
%P 109-117
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/
%G ru
%F MZM_2023_113_1_a8
Ruifang Chen; Xianhe Zhao. Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 109-117. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/

[1] D. J. S. Robinson, A Course in the Theory of Groups, Springer, Berlin, 1996 | MR

[2] W. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, Cambridge, 1911

[3] E. A. Bertram, M. Herzog, A. Mann, “On a graph related to conjugacy classes of groups”, Bull. Lond. Math. Soc., 22 (1990), 569–575 | DOI | MR

[4] C. Casolo, S. Dolfi, E. Jabara, “Finite groups whose noncentral class sizes have the same $p$-part for some prime $p$”, Israel J. Math., 192 (2012), 197–219 | DOI | MR

[5] D. Chillag, M. Herzog, “On the length of conjugacy classes of finite groups”, J. Algebra, 131 (1990), 110–125 | DOI | MR

[6] N. Itô, “On finite groups with given conjugate type. I”, Nagoya Math. J., 6 (1953), 17–28 | DOI | MR

[7] Z. Akhlaghi, A. Beltrán, M. J. Felipe, M. Khatami, “Normal subgroups and $p$-regular $G$-class sizes”, J. Algebra, 336 (2011), 236–241 | DOI | MR

[8] E. Alemany, A. Beltrán, M. J. Felipe, “Finite groups with two $p$-regular conjugacy class lengths. II”, Bull. Aust. Math. Soc., 79 (2009), 419–425 | DOI | MR

[9] R. F. Chen, X. H. Zhao, “A criterion for a group to have nilpotent $p$-complements”, Monatsh. Math., 179:2 (2016), 221–225 | DOI | MR

[10] K. Ishikawa, “On finite $p$-gruppas which have only two conjugacy lengths”, Israel J. Math., 129 (2002), 119–123 | DOI | MR

[11] A. Mann, “Elements of minimal breadth in finite $p$-gruppas and Lie algebras”, J. Austral. Math. Soc., 81 (2006), 209–214 | DOI | MR

[12] I. M. Isaacs, “Subgroups generated by small classes in finite groups”, Proc. Amer. Math. Soc., 136:7 (2008), 2299–2301 | DOI | MR

[13] M. K. Yadav, “On subgroups generated by small classes in finite groups”, Comm. Algebra, 41 (2013), 3350–3354 | DOI | MR

[14] E. Alemany, A. Beltrán, M. J. Felipe, “Nilpotency of normal subgroups having two $G$-class sizes”, Proc. Amer. Math. Soc., 139 (2011), 2663–2669 | DOI | MR

[15] X. L. Liu, Y. M. Wang, H. Q. Wei, “Notes on the length of conjugacy classes of finite groups”, J. Pure Appl. Algebra, 196 (2005), 111–117 | DOI | MR

[16] I. M. Isaacs, Finite Group Theory, Grad. Stud. in Math., 92, Amer. Math. Soc., Providence, RI, 2008 | MR

[17] X. L. Liu, “Notes on the length of conjugacy classes of finite groups. II”, in Chinese, Sci. Sin Math., 40:6 (2010), 539–544 | DOI