Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_1_a8, author = {Ruifang Chen and Xianhe Zhao}, title = {Influence of {Conjugacy} {Class} {Sizes} of {Some} {Elements} on the {Structure} of a {Finite} {Group}}, journal = {Matemati\v{c}eskie zametki}, pages = {109--117}, publisher = {mathdoc}, volume = {113}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/} }
TY - JOUR AU - Ruifang Chen AU - Xianhe Zhao TI - Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group JO - Matematičeskie zametki PY - 2023 SP - 109 EP - 117 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/ LA - ru ID - MZM_2023_113_1_a8 ER -
Ruifang Chen; Xianhe Zhao. Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 109-117. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/
[1] D. J. S. Robinson, A Course in the Theory of Groups, Springer, Berlin, 1996 | MR
[2] W. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, Cambridge, 1911
[3] E. A. Bertram, M. Herzog, A. Mann, “On a graph related to conjugacy classes of groups”, Bull. Lond. Math. Soc., 22 (1990), 569–575 | DOI | MR
[4] C. Casolo, S. Dolfi, E. Jabara, “Finite groups whose noncentral class sizes have the same $p$-part for some prime $p$”, Israel J. Math., 192 (2012), 197–219 | DOI | MR
[5] D. Chillag, M. Herzog, “On the length of conjugacy classes of finite groups”, J. Algebra, 131 (1990), 110–125 | DOI | MR
[6] N. Itô, “On finite groups with given conjugate type. I”, Nagoya Math. J., 6 (1953), 17–28 | DOI | MR
[7] Z. Akhlaghi, A. Beltrán, M. J. Felipe, M. Khatami, “Normal subgroups and $p$-regular $G$-class sizes”, J. Algebra, 336 (2011), 236–241 | DOI | MR
[8] E. Alemany, A. Beltrán, M. J. Felipe, “Finite groups with two $p$-regular conjugacy class lengths. II”, Bull. Aust. Math. Soc., 79 (2009), 419–425 | DOI | MR
[9] R. F. Chen, X. H. Zhao, “A criterion for a group to have nilpotent $p$-complements”, Monatsh. Math., 179:2 (2016), 221–225 | DOI | MR
[10] K. Ishikawa, “On finite $p$-gruppas which have only two conjugacy lengths”, Israel J. Math., 129 (2002), 119–123 | DOI | MR
[11] A. Mann, “Elements of minimal breadth in finite $p$-gruppas and Lie algebras”, J. Austral. Math. Soc., 81 (2006), 209–214 | DOI | MR
[12] I. M. Isaacs, “Subgroups generated by small classes in finite groups”, Proc. Amer. Math. Soc., 136:7 (2008), 2299–2301 | DOI | MR
[13] M. K. Yadav, “On subgroups generated by small classes in finite groups”, Comm. Algebra, 41 (2013), 3350–3354 | DOI | MR
[14] E. Alemany, A. Beltrán, M. J. Felipe, “Nilpotency of normal subgroups having two $G$-class sizes”, Proc. Amer. Math. Soc., 139 (2011), 2663–2669 | DOI | MR
[15] X. L. Liu, Y. M. Wang, H. Q. Wei, “Notes on the length of conjugacy classes of finite groups”, J. Pure Appl. Algebra, 196 (2005), 111–117 | DOI | MR
[16] I. M. Isaacs, Finite Group Theory, Grad. Stud. in Math., 92, Amer. Math. Soc., Providence, RI, 2008 | MR
[17] X. L. Liu, “Notes on the length of conjugacy classes of finite groups. II”, in Chinese, Sci. Sin Math., 40:6 (2010), 539–544 | DOI