Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 109-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. For every element $x\in G$, the set $\{x^g=g^{-1}xg: g\in G\}$ is called the conjugacy class of $x$ in $G$ and is denoted by $x^G$. The conjugacy class size of $x$ in $G$ is denoted by $|x^G|$ and is equal to $|G:C_G(x)|$. An element $y$ of $G$ is said to be primary or biprimary if the order of $y$ is divisible by exactly one or two distinct primes. For a positive integer $n$ and a prime $p$, if $e>0$ is an integer such that $p^e$ divides $n$ and $p^{e+1}$ does not divide $n$, then $p^e$ is called the $p$-part of $n$. Let $p$ be a prime divisor of $p$ such that $(p-1,|G|)=1$. We prove that $G$ is solvable and $p$-nilpotent if the conjugacy sizes of all noncentral primary and biprimary elements in $G$ have the same $p$-part. On the other hand, suppose that $N$ is a normal subgroup of $G$; we write $\operatorname{cs}_G(N)=\{|x^G|:x\in N\}$. Suppose that $\operatorname{cs}_G(N)=\{1,n_1,n_2,\dots,n_t\}$, where $1$. Denote by $$ M_N(G)=\langle x^G:x\in N,\,x^G=1\text{ or }n_1\rangle $$ a subgroup of $G$. We prove that if $C_G(F(G))\le F(G)$ and $[x,F(G)]$ is a normal subset of $F(G)$ for every $x\in N$ with $|x^G|=1$ or $n_1$, then $M_N(G)$ is a nilpotent group with nilpotency class at most 2.
Keywords: conjugacy class size; solvable group; $p$-nilpotent group; nilpotency class.
@article{MZM_2023_113_1_a8,
     author = {Ruifang Chen and Xianhe Zhao},
     title = {Influence of {Conjugacy} {Class} {Sizes} of {Some} {Elements} on the {Structure} of a {Finite} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/}
}
TY  - JOUR
AU  - Ruifang Chen
AU  - Xianhe Zhao
TI  - Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
JO  - Matematičeskie zametki
PY  - 2023
SP  - 109
EP  - 117
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/
LA  - ru
ID  - MZM_2023_113_1_a8
ER  - 
%0 Journal Article
%A Ruifang Chen
%A Xianhe Zhao
%T Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group
%J Matematičeskie zametki
%D 2023
%P 109-117
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/
%G ru
%F MZM_2023_113_1_a8
Ruifang Chen; Xianhe Zhao. Influence of Conjugacy Class Sizes of Some Elements on the Structure of a Finite Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 109-117. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a8/