On Orthogonally Additive Operators in Lattice-Normed Spaces
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 58-74

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a new class of locally dominated orthogonally additive operators on lattice-normed spaces (LNS). In the first part of the paper, sufficient conditions for the existence of a local exact majorant of a locally dominated operator and formulas for its calculation are given. The second part shows that the $C$-compactness of a dominated orthogonally additive operator acting from a decomposable lattice-normed space to a Banach space with mixed norm implies the $C$-compactness of its exact majorant.
Keywords: orthogonally additive operator, $x$-locally dominated operator, positive operator, $C$-compact operator, lattice-normed space, vector lattice, Banach lattice.
Mots-clés : $x$-local exact majorant
@article{MZM_2023_113_1_a5,
     author = {N. A. Dzhusoeva and S. Yu. Itarova},
     title = {On {Orthogonally} {Additive} {Operators} in {Lattice-Normed} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - S. Yu. Itarova
TI  - On Orthogonally Additive Operators in Lattice-Normed Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 58
EP  - 74
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/
LA  - ru
ID  - MZM_2023_113_1_a5
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A S. Yu. Itarova
%T On Orthogonally Additive Operators in Lattice-Normed Spaces
%J Matematičeskie zametki
%D 2023
%P 58-74
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/
%G ru
%F MZM_2023_113_1_a5
N. A. Dzhusoeva; S. Yu. Itarova. On Orthogonally Additive Operators in Lattice-Normed Spaces. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 58-74. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/