On Orthogonally Additive Operators in Lattice-Normed Spaces
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 58-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a new class of locally dominated orthogonally additive operators on lattice-normed spaces (LNS). In the first part of the paper, sufficient conditions for the existence of a local exact majorant of a locally dominated operator and formulas for its calculation are given. The second part shows that the $C$-compactness of a dominated orthogonally additive operator acting from a decomposable lattice-normed space to a Banach space with mixed norm implies the $C$-compactness of its exact majorant.
Keywords: orthogonally additive operator, $x$-locally dominated operator, positive operator, $C$-compact operator, lattice-normed space, vector lattice, Banach lattice.
Mots-clés : $x$-local exact majorant
@article{MZM_2023_113_1_a5,
     author = {N. A. Dzhusoeva and S. Yu. Itarova},
     title = {On {Orthogonally} {Additive} {Operators} in {Lattice-Normed} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - S. Yu. Itarova
TI  - On Orthogonally Additive Operators in Lattice-Normed Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 58
EP  - 74
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/
LA  - ru
ID  - MZM_2023_113_1_a5
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A S. Yu. Itarova
%T On Orthogonally Additive Operators in Lattice-Normed Spaces
%J Matematičeskie zametki
%D 2023
%P 58-74
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/
%G ru
%F MZM_2023_113_1_a5
N. A. Dzhusoeva; S. Yu. Itarova. On Orthogonally Additive Operators in Lattice-Normed Spaces. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 58-74. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a5/

[1] J. M. Mazón, S. Segura de León, “Order bounded orthogonally additive operators”, Rev. Roumaine Math. Pures Appl., 35:4 (1990), 329–353 | MR

[2] S. Segura de León, “Bukhvalov type characterization of Urysohn operators”, Studia Math., 99:3 (1991), 199–220 | DOI | MR

[3] M. Pliev, K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediter. J. Math., 15:2 (2018), 20p | MR

[4] N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Func. Anal., 11:4 (2020), 914–928 | DOI | MR

[5] O. Fotiy, A. Gumenchuk, I. Krasikova, M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80 | DOI | MR

[6] V. Mykhaylyuk, M. Pliev, M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR

[7] M. Pliev, F. Polat, M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74 (2019), 19p | DOI | MR

[8] N. M. Abasov, “On band preserving orthogonally additive operators”, Sib. elektron. matem. izv., 18:1 (2021), 495–510 | DOI

[9] N. Abasov, M. Pliev, “On extensions of some nonlinear maps in vector lattices”, J. Math. Anal. Appl., 455:1 (2017), 516–527 | DOI | MR

[10] N. Erkursun Ozcan, M. Pliev, “On orthogonally additive operators in $C$-complete vector lattices”, Banach J. Math. Anal., 16:1 (2022), Paper No. 6 | MR

[11] W. A. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245 | DOI | MR

[12] O. Fotiy, I. Krasikova, M. Pliev, M. Popov, “Order continuity of orthogonally additive operators”, Results Math., 77:1 (2022), Paper No. 5 | DOI | MR

[13] M. Pliev, “Domination problem for narrow orthogonally additive operators”, Positivity, 21 (2017), 23–33 | DOI | MR

[14] P. Tradacete, I. Villanueva, “Valuations on Banach lattices”, Int. Math. Res. Not., 2020:1 (2020), 287–319 | MR

[15] E. Basaeva, R. Kulaev, M. Pliev, “On orthogonally additive operators in Köthe–Bochner spaces”, Results Math., 76:1 (2021), Paper No. 20 | DOI | MR

[16] N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4 (2019), 251–264 | DOI | MR

[17] M. A. Pliev, M. M. Popov, “O prodolzhenii abstraktnykh operatorov Urysona”, Sib. matem. zhurn., 57:3 (2016), 700–708 | DOI | MR

[18] M. Popov, “Banach lattices of orthogonally additive operators”, J. Math. Anal. Appl., 514:1 (2022), 26p | DOI | MR

[19] A. G. Kusraev, Mazhoriruemye operatory, Nauka, M., 2003

[20] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006 | MR

[21] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[22] J. M. Mazón, S. Segura de León, “Uryson operators”, Rev. Roumaine Math. Pures Appl., 35:5 (1990), 431–449 | MR

[23] M. Pliev, “On $C$-compact orthogonally additive operators”, J. Math. Anal. Appl., 494:1 (2021), 15p | DOI | MR