Spectral Synthesis on the Reduced Heisenberg Group
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 46-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectral synthesis problem for the phase space $\mathbb{C}^n$ associated with the reduced Heisenberg group $H^n_{\rm{red}}$ is studied. The paper deals with the case of subspaces in $\mathcal{E}(\mathbb{C}^n)$ invariant under the twisted shifts $$ f(z)\to f(z-w)e^{(i/2)\operatorname{Im}\langle z,{w}\rangle},\qquad w\in\mathbb{C}^n, $$ and the action of the unitary group $U(n)$. It is shown that any such subspace is generated by the root vectors of a special Hermite operator contained in this subspace. As a corollary, we obtain the spectral synthesis theorem for subspaces in $\mathcal{E}(H^n_{\rm{red}})$ invariant under the unilateral shifts and the action of the unitary group $U(n)$.
Keywords:
spherical harmonics, Heisenberg group, transmutation operators.
@article{MZM_2023_113_1_a4,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Spectral {Synthesis} on the {Reduced} {Heisenberg} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {46--57},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/}
}
V. V. Volchkov; Vit. V. Volchkov. Spectral Synthesis on the Reduced Heisenberg Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/