Spectral Synthesis on the Reduced Heisenberg Group
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral synthesis problem for the phase space $\mathbb{C}^n$ associated with the reduced Heisenberg group $H^n_{\rm{red}}$ is studied. The paper deals with the case of subspaces in $\mathcal{E}(\mathbb{C}^n)$ invariant under the twisted shifts $$ f(z)\to f(z-w)e^{(i/2)\operatorname{Im}\langle z,{w}\rangle},\qquad w\in\mathbb{C}^n, $$ and the action of the unitary group $U(n)$. It is shown that any such subspace is generated by the root vectors of a special Hermite operator contained in this subspace. As a corollary, we obtain the spectral synthesis theorem for subspaces in $\mathcal{E}(H^n_{\rm{red}})$ invariant under the unilateral shifts and the action of the unitary group $U(n)$.
Keywords: spherical harmonics, Heisenberg group, transmutation operators.
@article{MZM_2023_113_1_a4,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Spectral {Synthesis} on the {Reduced} {Heisenberg} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Spectral Synthesis on the Reduced Heisenberg Group
JO  - Matematičeskie zametki
PY  - 2023
SP  - 46
EP  - 57
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/
LA  - ru
ID  - MZM_2023_113_1_a4
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Spectral Synthesis on the Reduced Heisenberg Group
%J Matematičeskie zametki
%D 2023
%P 46-57
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/
%G ru
%F MZM_2023_113_1_a4
V. V. Volchkov; Vit. V. Volchkov. Spectral Synthesis on the Reduced Heisenberg Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a4/

[1] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[2] L. Schwartz, “Theorie générale des functions moyenne-periodique̋”, Ann. Math., 48 (1947), 857–928 | DOI | MR

[3] D. I. Gurevich, “Kontrprimery k probleme L. Shvartsa”, Funkts. analiz i ego pril., 9:2 (1975), 29–35 | MR | Zbl

[4] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR

[5] S. C. Bagchi, A. Sitaram, “Spherical mean periodic functions on semisimple Lie groups”, Pacific J. Math., 84 (1979), 241–250 | DOI | MR

[6] C. A. Berenstein, R. Gay, “Sur la sythése spectrale dans les espaces symmetriques”, J. Math. Pures Appl. (9), 65:3 (1986), 323–334 | MR

[7] C. A. Berenstein, “Spectral synthesis on symmetric spaces”, Integral Geometry, Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 1–25 | DOI | MR

[8] A. Wawrzyñczyk, “Spectral analysis and synthesis on symmetric spaces”, J. Math. Anal. Appl., 127 (1987), 1–17 | DOI | MR

[9] S. S. Platonov, “O spektralnom sinteze na simmetricheskikh prostranstvakh ranga 1”, Algebra i analiz, 4:4 (1992), 174–187 | MR | Zbl

[10] E. K. Narayanan, A. Sitaram, “Analogues of the Wiener–Tauberian and Schwartz theorems for radial functions on symmetric spaces”, Pacific J. Math., 249:1 (2011), 199–210 | DOI | MR

[11] N. Peyerimhoff, E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces”, Ark. Mat., 48 (2010), 131–147 | DOI | MR

[12] L. Ehrenpreis, F. Mautner, “Some properties of the Fourier transform on semi-simple Lie groups. II”, Trans. Amer. Math. Soc., 84 (1957), 1–55 | MR

[13] Y. Weit, “On Schwartz's theorem for the motion group”, Ann. Inst. Fourier (Grenoble), 30:1 (1980), 91–107 | DOI | MR

[14] P. K. Rashevskii, “Opisanie zamknutykh invariantnykh podprostranstv v nekotorykh funktsionalnykh prostranstvakh”, Tr. MMO, 38, Izd-vo Mosk. un-ta, M., 1979, 139–185 | MR | Zbl

[15] S. S. Platonov, “Invariantnye podprostranstva v nekotorykh funktsionalnykh prostranstvakh na gruppe dvizhenii evklidovoi ploskosti”, Sib. matem. zhurn., 31:3 (1990), 135–146 | MR | Zbl

[16] S. Thangavelu, “Mean periodic functions on phase space and the Pompeiu problem with a twist”, Ann. Inst. Fourier (Grenoble), 45 (1995), 1007–1035 | DOI | MR

[17] V. V. Volchkov, Vit. V. Volchkov, “Uravneniya svertki na mnogomernykh oblastyakh i redutsirovannoi gruppe Geizenberga”, Matem. sb., 199:8 (2008), 29–60 | DOI | MR

[18] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[19] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984 | MR

[20] V. V. Volchkov, Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009 | MR

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR

[22] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993 | MR

[23] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl

[24] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR