On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the space $l_r$ is crudely finitely representable in the Lorentz space $L_{p,q}[0,1]$, $1$, if and only if $r=p$ or $r=q$. To the best of the author's knowledge, this is the first example of a “natural” rearrangement-invariant space $E$ on $[0,1]$ such that the set of all numbers $r$ for which $l_r$ is crudely finitely representable in $E$ is not an interval of the real line.
Keywords: finite representability, Lorentz space, rearrangement-invariant space, Banach lattice, upper (lower) estimate, ${\mathcal K}$-functional.
@article{MZM_2023_113_1_a1,
     author = {S. V. Astashkin},
     title = {On {Lattice} {Properties} of the {Lorentz} {Spaces~}$L_{p,q}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 11
EP  - 20
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/
LA  - ru
ID  - MZM_2023_113_1_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
%J Matematičeskie zametki
%D 2023
%P 11-20
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/
%G ru
%F MZM_2023_113_1_a1
S. V. Astashkin. On Lattice Properties of the Lorentz Spaces~$L_{p,q}$. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/

[1] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric Structures in Banach Spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., 1979 | MR

[2] S. V. Astashkin, “Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $(0,\infty)$”, Math. Ann., 383:3-4 (2022), 1489–1520 | DOI | MR

[3] S. V. Astashkin, G. P. Curbera, Symmetric Finite Representability of $\ell^p$-Spaces in Rearrangement Invariant Spaces on $[0,1]$, 2022, arXiv: 2204.13904v1

[4] S. J. Dilworth, “Special Banach lattices and their applications”, Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, North-Hollan, 2001, 497–532 | MR

[5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin, 1979 | MR

[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[7] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR

[8] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl

[9] Yu. A. Brudnyi, N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991 | MR

[10] A. R. Shepp, “Krivine's theorem and the indices of a Banach lattice”, Acta Appl. Math., 27 (1992), 111–121 | DOI | MR

[11] B. Cuartero, M. A. Triana, “$(p,q)$-Convexity in quasi-Banach lattices and applications”, Studia Math., 84 (1986), 113–124 | DOI | MR

[12] S. V. Astashkin, “O finitnoi predstavimosti $l_p$-prostranstv v simmetrichnykh prostranstvakh”, Algebra i analiz, 23:2 (2011), 77–101 | MR | Zbl

[13] S. V. Astashkin, P. G. Nilsson, “Arazy-Cwikel property for quasi-Banach couples”, Positivity, 26:4 (2022), Paper No. 72 | DOI | MR

[14] L. Maligranda, “The $K$-functional for $p$-convexifications”, Positivity, 17 (2013), 707–710 | DOI | MR

[15] N. L. Carothers, S. J. Dilworth, “Some Banach space embeddings of classical function spaces”, Bull. Austral. Math. Soc., 43 (1991), 73–77 | DOI | MR

[16] S. J. Dilworth, “Some probabilistic inequalities with applications to functional analysis”, Contemp. Math., 144 (1993), 53–67 | DOI | MR

[17] N. L. Carothers, S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR

[18] S. V. Astashkin, “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi–axis”, J. Funct. Anal., 260 (2011), 195–207 | DOI | MR

[19] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[20] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR

[21] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approx. Theory, 13 (1975), 395–412 | DOI | MR