Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_1_a1, author = {S. V. Astashkin}, title = {On {Lattice} {Properties} of the {Lorentz} {Spaces~}$L_{p,q}$}, journal = {Matemati\v{c}eskie zametki}, pages = {11--20}, publisher = {mathdoc}, volume = {113}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/} }
S. V. Astashkin. On Lattice Properties of the Lorentz Spaces~$L_{p,q}$. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/
[1] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric Structures in Banach Spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., 1979 | MR
[2] S. V. Astashkin, “Symmetric finite representability of $\ell^p$-spaces in rearrangement invariant spaces on $(0,\infty)$”, Math. Ann., 383:3-4 (2022), 1489–1520 | DOI | MR
[3] S. V. Astashkin, G. P. Curbera, Symmetric Finite Representability of $\ell^p$-Spaces in Rearrangement Invariant Spaces on $[0,1]$, 2022, arXiv: 2204.13904v1
[4] S. J. Dilworth, “Special Banach lattices and their applications”, Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, North-Hollan, 2001, 497–532 | MR
[5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin, 1979 | MR
[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl
[7] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR
[8] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl
[9] Yu. A. Brudnyi, N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991 | MR
[10] A. R. Shepp, “Krivine's theorem and the indices of a Banach lattice”, Acta Appl. Math., 27 (1992), 111–121 | DOI | MR
[11] B. Cuartero, M. A. Triana, “$(p,q)$-Convexity in quasi-Banach lattices and applications”, Studia Math., 84 (1986), 113–124 | DOI | MR
[12] S. V. Astashkin, “O finitnoi predstavimosti $l_p$-prostranstv v simmetrichnykh prostranstvakh”, Algebra i analiz, 23:2 (2011), 77–101 | MR | Zbl
[13] S. V. Astashkin, P. G. Nilsson, “Arazy-Cwikel property for quasi-Banach couples”, Positivity, 26:4 (2022), Paper No. 72 | DOI | MR
[14] L. Maligranda, “The $K$-functional for $p$-convexifications”, Positivity, 17 (2013), 707–710 | DOI | MR
[15] N. L. Carothers, S. J. Dilworth, “Some Banach space embeddings of classical function spaces”, Bull. Austral. Math. Soc., 43 (1991), 73–77 | DOI | MR
[16] S. J. Dilworth, “Some probabilistic inequalities with applications to functional analysis”, Contemp. Math., 144 (1993), 53–67 | DOI | MR
[17] N. L. Carothers, S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR
[18] S. V. Astashkin, “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi–axis”, J. Funct. Anal., 260 (2011), 195–207 | DOI | MR
[19] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR
[20] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR
[21] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approx. Theory, 13 (1975), 395–412 | DOI | MR