On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 11-20

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the space $l_r$ is crudely finitely representable in the Lorentz space $L_{p,q}[0,1]$, $1$, if and only if $r=p$ or $r=q$. To the best of the author's knowledge, this is the first example of a “natural” rearrangement-invariant space $E$ on $[0,1]$ such that the set of all numbers $r$ for which $l_r$ is crudely finitely representable in $E$ is not an interval of the real line.
Keywords: finite representability, Lorentz space, rearrangement-invariant space, Banach lattice, upper (lower) estimate, ${\mathcal K}$-functional.
@article{MZM_2023_113_1_a1,
     author = {S. V. Astashkin},
     title = {On {Lattice} {Properties} of the {Lorentz} {Spaces~}$L_{p,q}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
JO  - Matematičeskie zametki
PY  - 2023
SP  - 11
EP  - 20
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/
LA  - ru
ID  - MZM_2023_113_1_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On Lattice Properties of the Lorentz Spaces~$L_{p,q}$
%J Matematičeskie zametki
%D 2023
%P 11-20
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/
%G ru
%F MZM_2023_113_1_a1
S. V. Astashkin. On Lattice Properties of the Lorentz Spaces~$L_{p,q}$. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a1/