Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_6_a7, author = {F. S. Stonyakin and A. A. Titov and D. V. Makarenko and M. S. Alkousa}, title = {Numerical {Methods} for {Some} {Classes} of {Variational} {Inequalities} with {Relatively} {Strongly} {Monotone} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {879--894}, publisher = {mathdoc}, volume = {112}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a7/} }
TY - JOUR AU - F. S. Stonyakin AU - A. A. Titov AU - D. V. Makarenko AU - M. S. Alkousa TI - Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators JO - Matematičeskie zametki PY - 2022 SP - 879 EP - 894 VL - 112 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a7/ LA - ru ID - MZM_2022_112_6_a7 ER -
%0 Journal Article %A F. S. Stonyakin %A A. A. Titov %A D. V. Makarenko %A M. S. Alkousa %T Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators %J Matematičeskie zametki %D 2022 %P 879-894 %V 112 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a7/ %G ru %F MZM_2022_112_6_a7
F. S. Stonyakin; A. A. Titov; D. V. Makarenko; M. S. Alkousa. Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 879-894. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a7/
[1] H. Bauschke, J. Bolte, M. Teboulle, “A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications”, Math. Oper. Res., 42:2 (2017), 330–348 | DOI | MR | Zbl
[2] R.-A. Dragomir, A. Taylor, A. d'Aspremont, J. Bolte, “Optimal complexity and certification of Bregman first-order methods”, Math. Program. Ser. A, 194:1-2 (2022), 41–83 | DOI | MR | Zbl
[3] H. Lu, R. Freund, Yu. Nesterov, “Relatively smooth convex optimization by first-order methods, and applications”, SIAM J. Optim., 28:1 (2018), 333–354 | DOI | MR | Zbl
[4] R.-A. Dragomir, Bregman Gradient Methods for Relatively-Smooth Optimization, Doctoral Dissertation, 2021 https://hal.inria.fr/tel-03389344/document
[5] S. Julien, M. Schmidt, F. Bach, A Simpler Approach to Obtaining an $O(1/t)$ Convergence Rate for the Projected Stochastic Subgradient Method, 2012, arXiv: 1212.2002
[6] K. Antonakopoulos, P. Mertikopoulos, “Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements”, 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021
[7] H. Lu, “Relative-continuity for non-Lipschitz nonsmooth convex optimization using stochastic (or deterministic) mirror descent”, INFORMS J. Optim., 1:4 (2018), 288–303 | MR | Zbl
[8] Y. Zhou, V. Portella, M. Schmidt, N. Harvey, “Regret bounds without Lipschitz continuity: Online learning with relative-Lipschitz losses”, 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Springer, Vancouver, BC, 2020, 232–246
[9] H. Hendrikx, L. Xiao, S. Bubeck, F. Bach, L. Massoulie, “Statistically preconditioned accelerated gradient method for distributed optimization”, Proceedings of the 37th International Conference on Machine Learning, 2020 https://hal.archives-ouvertes.fr/hal-02974232
[10] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Agafonov, D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, V. Piskunova, “Inexact relative smoothness and strong convexity for optimization and variational inequalities by inexact model”, Optim. Methods Softw., 36:6 (2021), 1155–1201 | DOI | MR | Zbl
[11] A. Gasnikov, P. Dvurechensky, F. Stonyakin, A. Titov, “An adaptive proximal method for variational inequalities”, Comput. Math. and Math. Phys., 59:5 (2018), 836–841 | DOI
[12] A. Titov, F. Stonyakin, M. Alkousa, A. Gasnikov, “Algorithms for solving variational inequalities and saddle point problems with some generalizations of Lipschitz property for operators”, Mathematical Optimization Theory and Operations Research – Recent Trends, Commun. Comput. Inf. Sci., 1476, Springer, Cham, 2021, 86–101 | MR
[13] A. S. Nemirovskii, Yu. E. Nesterov, “Optimalnye metody gladkoi vypukloi minimizatsii”, Zh. vychisl. matem. i matem. fiz., 25:3 (1985), 356–369 | MR | Zbl
[14] F. Stonyakin, A. Titov, M. Alkousa, O. Savchuk, D. Pasechnyuk, Gradient-Type Adaptive Methods for Relatively Lipschitz Convex Optimization Problems, , 2021 2107.05765 | Zbl