@article{MZM_2022_112_6_a5,
author = {S. Ya. Novikov and V. V. Sevost'yanova},
title = {Equivalence {Classes} of {Parseval} {Frames}},
journal = {Matemati\v{c}eskie zametki},
pages = {850--866},
year = {2022},
volume = {112},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/}
}
S. Ya. Novikov; V. V. Sevost'yanova. Equivalence Classes of Parseval Frames. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 850-866. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/
[1] S. F. D. Waldron, An Introduction to Finite Tight Frames, Birkhauser, Boston, 2018 | MR | Zbl
[2] M. Fickus, J. Jasper, E. J. King, D. G. Mixon, “Equiangular tight frames that contain regular simplices”, Linear Algebra Appl., 555 (2018), 98–138 | DOI | MR | Zbl
[3] S. Ya. Novikov, “Equiangular tight frames with simplices and with full spark in $\mathbb{R}^d$”, Lobachevskii J. Math., 42:1 (2021), 155–166 | DOI | MR | Zbl
[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2002 | MR
[5] A. I. Maltsev, “Zamechanie k rabote A. N. Kolmogorova, A. A. Petrova i Yu. M. Smirnova "Odna formula Gaussa iz teorii naimenshikh kvadratov”, Izv. AN SSSR. Ser. matem., 11:6 (1947), 567–568 | MR | Zbl
[6] M. N. Istomina, A. B. Pevnyi, “O raspolozhenii tochek na sfere i freime Mersedes–Bents”, Matem. prosv., ser. 3, 11, Izd-vo MTsNMO, M., 2007, 105–112
[7] M. Elad, Sparse and Redundant Representations, Springer, New York, 2010 | MR | Zbl
[8] A. Abdollahi, H. Najafi, “Frame graphs”, Linear Multilinear Algebra, 66:6 (2018), 1229–1243 | DOI | MR | Zbl
[9] M. Sustik, J. Tropp, I. Dhillon, R. Jr, “On the existence of equiangular tight frames”, Linear Algebra Appl., 426:2-3 (2007), 619–635 | DOI | MR | Zbl
[10] C. Godsil, G. Royle, Algebraic Graph Theory, Grad. Texts in Math., 207, Springer, New York, 2001 | MR | Zbl