Equivalence Classes of Parseval Frames
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 850-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set of frames in a finite-dimensional space, we introduce the widest possible equivalence preserving the main characteristics of frames, that is, tightness, equiangularity, and spark (the least number of linearly dependent vectors). This equivalence is known as projective–permutational unitary equivalence. For example, we show that full spark equiangular tight frames in the spaces $\mathbb{R}^3$, $\mathbb{R}^5$, and $\mathbb{R}^7$ are unique up to equivalence. A similar uniqueness result is obtained for the general uniform Parseval frame of $d+1$ vectors in the space $\mathbb{R}^d$. Related questions have been raised in the literature several times. Calculating the spark is computationally much harder than calculating the rank of a matrix. Here we present an algorithm that can possibly simplify the spark calculation. The use of Seidel matrices and the Naimark complement technique proves to be very useful in the classification of frames up to equivalence.
Keywords: tight frame, projective–permutational unitary equivalence, spark, uniqueness, Naimark complement.
@article{MZM_2022_112_6_a5,
     author = {S. Ya. Novikov and V. V. Sevost'yanova},
     title = {Equivalence {Classes} of {Parseval} {Frames}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {850--866},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/}
}
TY  - JOUR
AU  - S. Ya. Novikov
AU  - V. V. Sevost'yanova
TI  - Equivalence Classes of Parseval Frames
JO  - Matematičeskie zametki
PY  - 2022
SP  - 850
EP  - 866
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/
LA  - ru
ID  - MZM_2022_112_6_a5
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%A V. V. Sevost'yanova
%T Equivalence Classes of Parseval Frames
%J Matematičeskie zametki
%D 2022
%P 850-866
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/
%G ru
%F MZM_2022_112_6_a5
S. Ya. Novikov; V. V. Sevost'yanova. Equivalence Classes of Parseval Frames. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 850-866. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a5/

[1] S. F. D. Waldron, An Introduction to Finite Tight Frames, Birkhauser, Boston, 2018 | MR | Zbl

[2] M. Fickus, J. Jasper, E. J. King, D. G. Mixon, “Equiangular tight frames that contain regular simplices”, Linear Algebra Appl., 555 (2018), 98–138 | DOI | MR | Zbl

[3] S. Ya. Novikov, “Equiangular tight frames with simplices and with full spark in $\mathbb{R}^d$”, Lobachevskii J. Math., 42:1 (2021), 155–166 | DOI | MR | Zbl

[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2002 | MR

[5] A. I. Maltsev, “Zamechanie k rabote A. N. Kolmogorova, A. A. Petrova i Yu. M. Smirnova "Odna formula Gaussa iz teorii naimenshikh kvadratov”, Izv. AN SSSR. Ser. matem., 11:6 (1947), 567–568 | MR | Zbl

[6] M. N. Istomina, A. B. Pevnyi, “O raspolozhenii tochek na sfere i freime Mersedes–Bents”, Matem. prosv., ser. 3, 11, Izd-vo MTsNMO, M., 2007, 105–112

[7] M. Elad, Sparse and Redundant Representations, Springer, New York, 2010 | MR | Zbl

[8] A. Abdollahi, H. Najafi, “Frame graphs”, Linear Multilinear Algebra, 66:6 (2018), 1229–1243 | DOI | MR | Zbl

[9] M. Sustik, J. Tropp, I. Dhillon, R. Jr, “On the existence of equiangular tight frames”, Linear Algebra Appl., 426:2-3 (2007), 619–635 | DOI | MR | Zbl

[10] C. Godsil, G. Royle, Algebraic Graph Theory, Grad. Texts in Math., 207, Springer, New York, 2001 | MR | Zbl