On Questions Posed by Shemetkov, Ballester-Bolinches, and Perez-Ramos in Finite Group Theory
Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 839-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

A chief factor $H/K$ of a group $G$ is said to be $\mathfrak{F}$-central if $(H/K)\rtimes (G/C_G(H/K))\in\mathfrak{F}$. In 1997, Shemetkov posed the problem of describing finite group formations $\mathfrak{F}$ such that $\mathfrak{F}$ coincides with the class of groups for which all chief factors are $\mathfrak{F}$-central. We refer to such formations as centrally saturated. We prove that the centrally saturated formations form a complete distributive lattice. As an answer to a question posed by Ballester-Bolinches and Perez-Ramos, conditions for a centrally saturated formation to be saturated and solvably saturated in the class of all groups are found. As a consequence, a criterion for hereditary Fitting formations to be solvably saturated is obtained.
Keywords: finite group, saturated formation, solvably saturated formation, centrally saturated formation, $\mathfrak{F}$-hypercenter, distributive lattice.
@article{MZM_2022_112_6_a4,
     author = {V. I. Murashka},
     title = {On {Questions} {Posed} by {Shemetkov,} {Ballester-Bolinches,} and {Perez-Ramos} in {Finite} {Group} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {839--849},
     publisher = {mathdoc},
     volume = {112},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a4/}
}
TY  - JOUR
AU  - V. I. Murashka
TI  - On Questions Posed by Shemetkov, Ballester-Bolinches, and Perez-Ramos in Finite Group Theory
JO  - Matematičeskie zametki
PY  - 2022
SP  - 839
EP  - 849
VL  - 112
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a4/
LA  - ru
ID  - MZM_2022_112_6_a4
ER  - 
%0 Journal Article
%A V. I. Murashka
%T On Questions Posed by Shemetkov, Ballester-Bolinches, and Perez-Ramos in Finite Group Theory
%J Matematičeskie zametki
%D 2022
%P 839-849
%V 112
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a4/
%G ru
%F MZM_2022_112_6_a4
V. I. Murashka. On Questions Posed by Shemetkov, Ballester-Bolinches, and Perez-Ramos in Finite Group Theory. Matematičeskie zametki, Tome 112 (2022) no. 6, pp. 839-849. http://geodesic.mathdoc.fr/item/MZM_2022_112_6_a4/

[1] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskii sistem, Nauka, M., 1989 | MR

[2] L. A. Shemetkov, “Frattini extensions of finite groups and formations”, Comm. Algebra, 23:3 (1997), 955–964 | DOI | MR

[3] A. F. Vasilev, V. I. Murashko, “Formatsii i proizvedeniya $\mathrm F(G)$-subnormalnykh podgrupp konechnykh razreshimykh grupp”, Matem. zametki, 107:3 (2020), 376–390 | DOI | MR | Zbl

[4] A. F. Vasilev, V. I. Murashko, A. K. Furs, “Konechnye gruppy s tremya nesopryazhennymi maksimalnymi formatsionnymi podgruppami”, Matem. zametki, 111:3 (2022), 354–364 | DOI | Zbl

[5] V. I. Murashka, A. F. Vasil'ev, “On the $\sigma$-nilpotent hypercenter of finite groups”, J. Group Theory, 2022 | DOI

[6] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite groups, Springer, New York, 2006 | MR | Zbl

[7] J. Lafuente, “Nonabelian crowns and Schunck classes of finite groups”, Arch. Math., 42 (1984), 32–39 | DOI | MR | Zbl

[8] A. Ballester-Bolinches, M. D. Perez-Ramos, “On a question of L. A. Shemetkov”, Comm. Algebra, 27:11 (1999), 5615–5618 | DOI | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992 | MR

[10] A. N. Skiba, “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, AN BSSR, Minsk, 1986, 135–149

[11] V. G. Safonov, “On modularity of the lattice of totally saturated formations of finite groups”, Comm. Algebra, 35:11 (2007), 3495–3502 | DOI | MR | Zbl

[12] A. Ballester-Bolinches, L. A. Shemetkov, “On lattices of p-local formations of finite groups”, Math. Nachr., 186 (1997), 57–65 | DOI | MR | Zbl

[13] V. G. Safonov, “$\mathfrak G$-otdelimost reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii”, Algebra i logika, 49:5 (2010), 690–702 | MR | Zbl

[14] A. Tsarev, N. N. Vorobev, “Lattices of composition formations of finite groups and the laws”, J. Algebra Appl., 17:5 (2018), Paper No. 1850084 | DOI | MR

[15] L. A. Shemetkov, A. N. Skiba, N. N. Vorob'ev, “On lattices of formations of finite groups”, Algebra Colloq., 17:4 (2010), 557–564 | DOI | MR | Zbl

[16] A. N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR

[17] R. A. Bryce, J. Cossey, “Fitting formations of finite soluble groups”, Math. Z., 127 (1972), 217–223 | DOI | MR | Zbl

[18] A. Ballester-Bolinches, L. M. Ezquerro, “On a theorem of Bryce and Cossey”, Bull. Austral. Math. Soc., 57 (1998), 455–460 | DOI | MR | Zbl

[19] S. F. Kamornikov, “O dvukh zadachakh iz "Kourovskoi tetradi”, Matem. zametki, 55:6 (1994), 59–63 | MR | Zbl

[20] A. Ballester-Bolinches, S. F. Kamornikov, “A note on solubly saturated formations of finite groups”, J. Algebra Appl., 14:4 (2015), 1550047 | DOI | MR | Zbl

[21] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, New York, 2015 | MR | Zbl

[22] R. L. Griess, P. Schmid, “The Frattini module”, Arch. Math., 30 (1978), 256–266 | DOI | MR | Zbl