Sharp Bernstein Inequalities for Jacobi--Dunkl Operators
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 770-783

Voir la notice de l'article provenant de la source Math-Net.Ru

We find sharp constants in the Bernstein inequality $$ \|\Lambda_{\alpha,\beta}^rf\|\le M\|f\| $$ for the Jacobi–Dunkl differential-difference operator $$ \Lambda_{\alpha,\beta}f(x) =f'(x)+\frac{A'_{\alpha,\beta}(x)}{A_{\alpha,\beta}(x)} \frac{f(x)-f(-x)}{2}\,. $$ Here $n,r\in\mathbb N$, $f$ is a trigonometric polynomial of degree $\le n$, the norm is uniform, $\alpha,\beta\ge -1/2$, and $A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|{\sin x}|$ is the Jacobi weight. In the spaces $L_p$ with Jacobi weight, upper bounds are obtained.
Keywords: Bernstein inequality, Jacobi–Dunkl operator
Mots-clés : sharp constant.
@article{MZM_2022_112_5_a9,
     author = {O. L. Vinogradov},
     title = {Sharp {Bernstein} {Inequalities} for {Jacobi--Dunkl} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {770--783},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a9/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Sharp Bernstein Inequalities for Jacobi--Dunkl Operators
JO  - Matematičeskie zametki
PY  - 2022
SP  - 770
EP  - 783
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a9/
LA  - ru
ID  - MZM_2022_112_5_a9
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Sharp Bernstein Inequalities for Jacobi--Dunkl Operators
%J Matematičeskie zametki
%D 2022
%P 770-783
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a9/
%G ru
%F MZM_2022_112_5_a9
O. L. Vinogradov. Sharp Bernstein Inequalities for Jacobi--Dunkl Operators. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 770-783. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a9/