Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_5_a8, author = {V. A. Sergeev and A. A. Fedotov}, title = {On the {Delocalization} of a {Quantum} {Particle} under the {Adiabatic} {Evolution} {Generated} by a {One-Dimensional} {Schr\"odinger} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {752--769}, publisher = {mathdoc}, volume = {112}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/} }
TY - JOUR AU - V. A. Sergeev AU - A. A. Fedotov TI - On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator JO - Matematičeskie zametki PY - 2022 SP - 752 EP - 769 VL - 112 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/ LA - ru ID - MZM_2022_112_5_a8 ER -
%0 Journal Article %A V. A. Sergeev %A A. A. Fedotov %T On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator %J Matematičeskie zametki %D 2022 %P 752-769 %V 112 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/ %G ru %F MZM_2022_112_5_a8
V. A. Sergeev; A. A. Fedotov. On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 752-769. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/
[1] A. D. Pierce, “Extension of the method of normal modes to sound propagation in an almost stratified medium”, J. Acoust. Soc. Amer., 37:1 (1965) | DOI
[2] A. D. Pierce, “Guided mode disappearance during upslope propagation in variable depth shallow water overlying a fluid bottom”, J. Acoust. Soc. Amer., 72:2 (1982), 523–531 | DOI | MR | Zbl
[3] J. M. Arnold, L. B. Felsen, “Rays and local modes in a wedge-shaped ocean”, J. Acoust. Soc. Amer., 73:4 (1983), 1105–1119 | DOI | MR | Zbl
[4] S. Yu. Dobrokhotov, D. S. Minenkov, A. I. Neishtadt, S. B. Shlosman, “Classical and auantum dynamics of apParticle in a narrow angle”, Regul. Chaotic Dyn., 24:6 (2019), 704–716 | DOI | MR | Zbl
[5] A. A. Fedotov, Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator with Decreasing Number of Eigenvalues, 2016, arXiv: 1609.09473
[6] A. A. Fedotov, “On adiabatic normal modes in a wedge shaped sea”, J. Math. Sci. (N.Y.), 243 (2019), 808–824 | DOI | MR | Zbl
[7] A. B. Smirnov, A. A. Fedotov, “Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra”, Funct. Anal. Appl., 50 (2016), 76–79 | DOI | MR | Zbl
[8] V. P. Smyshlyaev, I. V. Kamotski, “Searchlight asymptotics for high-frequency scattering by boundary inflection”, Algebra i analiz, 33:2 (2021), 275–297 | MR
[9] R. Wong, Asymptotic Approximations of Integrals, SIAM, Philadelphia, PA, 2001 | MR | Zbl