On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 752-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional nonstationary Schrödinger equation is discussed in the adiabatic approximation. The corresponding stationary operator $H$, depending on time as a parameter, has a continuous spectrum $\sigma_c=[0,+\infty)$ and finitely many negative eigenvalues. In time, the eigenvalues approach the edge of $\sigma_c$ and disappear one by one. The solution under consideration is close at some moment to an eigenfunction of $H$. As long as the corresponding eigenvalue $\lambda$ exists, the solution is localized inside the potential well. Its delocalization with the disappearance of $\lambda$ is described.
Keywords: one-dimensional nonstationary Schrödinger operator, delocalization of a quantum state
Mots-clés : adiabatic evolution.
@article{MZM_2022_112_5_a8,
     author = {V. A. Sergeev and A. A. Fedotov},
     title = {On the {Delocalization} of a {Quantum} {Particle} under the {Adiabatic} {Evolution} {Generated} by a {One-Dimensional} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {752--769},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/}
}
TY  - JOUR
AU  - V. A. Sergeev
AU  - A. A. Fedotov
TI  - On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2022
SP  - 752
EP  - 769
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/
LA  - ru
ID  - MZM_2022_112_5_a8
ER  - 
%0 Journal Article
%A V. A. Sergeev
%A A. A. Fedotov
%T On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator
%J Matematičeskie zametki
%D 2022
%P 752-769
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/
%G ru
%F MZM_2022_112_5_a8
V. A. Sergeev; A. A. Fedotov. On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 752-769. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a8/

[1] A. D. Pierce, “Extension of the method of normal modes to sound propagation in an almost stratified medium”, J. Acoust. Soc. Amer., 37:1 (1965) | DOI

[2] A. D. Pierce, “Guided mode disappearance during upslope propagation in variable depth shallow water overlying a fluid bottom”, J. Acoust. Soc. Amer., 72:2 (1982), 523–531 | DOI | MR | Zbl

[3] J. M. Arnold, L. B. Felsen, “Rays and local modes in a wedge-shaped ocean”, J. Acoust. Soc. Amer., 73:4 (1983), 1105–1119 | DOI | MR | Zbl

[4] S. Yu. Dobrokhotov, D. S. Minenkov, A. I. Neishtadt, S. B. Shlosman, “Classical and auantum dynamics of apParticle in a narrow angle”, Regul. Chaotic Dyn., 24:6 (2019), 704–716 | DOI | MR | Zbl

[5] A. A. Fedotov, Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator with Decreasing Number of Eigenvalues, 2016, arXiv: 1609.09473

[6] A. A. Fedotov, “On adiabatic normal modes in a wedge shaped sea”, J. Math. Sci. (N.Y.), 243 (2019), 808–824 | DOI | MR | Zbl

[7] A. B. Smirnov, A. A. Fedotov, “Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra”, Funct. Anal. Appl., 50 (2016), 76–79 | DOI | MR | Zbl

[8] V. P. Smyshlyaev, I. V. Kamotski, “Searchlight asymptotics for high-frequency scattering by boundary inflection”, Algebra i analiz, 33:2 (2021), 275–297 | MR

[9] R. Wong, Asymptotic Approximations of Integrals, SIAM, Philadelphia, PA, 2001 | MR | Zbl