Maslov Index on Symplectic Manifolds. With Supplement by A.~T.~Fomenko ``Constructing the Generalized Maslov Class for the Total Space $W=\mathbb{T}^*(M)$ of the Cotangent Bundle''
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 718-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometric properties of the Maslov index on symplectic manifolds are discussed. The Maslov index is constructed as a homological invariant on a Lagrangian submanifold of a symplectic manifold. In the simplest case, a Lagrangian submanifold $\Lambda\subset \mathbb{R}^{2n}\approx \mathbb{R}^{n}\oplus\mathbb{R}^{n}$ is a submanifold in the symplectic space $\mathbb{R}^{n}\oplus\mathbb{R}^{n}$, in which the symplectic structure is given by the nondegenerate form $\omega=\sum_{i=1}^n dx^{i}\wedge dy^{i}$ and $\Lambda\subset\mathbb{R}^{2n}$ is a submanifold, $\dim\Lambda=n$, on which the form $\omega$ is trivial. In the general case, a symplectic manifold $(W,\omega)$ and the bundle of Lagrangian Grassmannians $\mathcal{LG}(\mathbb{T}W)$ is considered. The question under study is as follows: when is the Maslov index, given on an individual Lagrangian manifold as a one-dimensional cohomology class, the image of a one-dimensional cohomology class of the total space $\mathcal{LG}(\mathbb{T}W)$ of bundles of Lagrangian Grassmannians? An answer is given for various classes of bundles of Lagrangian Grassmannians.
Keywords: Maslov index, Maslov class, symplectic manifold, bundle of Lagrangian manifolds.
@article{MZM_2022_112_5_a6,
     author = {A. S. Mishchenko},
     title = {Maslov {Index} on {Symplectic} {Manifolds.} {With} {Supplement} by {A.~T.~Fomenko} {``Constructing} the {Generalized} {Maslov} {Class} for the {Total} {Space} $W=\mathbb{T}^*(M)$ of the {Cotangent} {Bundle''}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--732},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a6/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - Maslov Index on Symplectic Manifolds. With Supplement by A.~T.~Fomenko ``Constructing the Generalized Maslov Class for the Total Space $W=\mathbb{T}^*(M)$ of the Cotangent Bundle''
JO  - Matematičeskie zametki
PY  - 2022
SP  - 718
EP  - 732
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a6/
LA  - ru
ID  - MZM_2022_112_5_a6
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T Maslov Index on Symplectic Manifolds. With Supplement by A.~T.~Fomenko ``Constructing the Generalized Maslov Class for the Total Space $W=\mathbb{T}^*(M)$ of the Cotangent Bundle''
%J Matematičeskie zametki
%D 2022
%P 718-732
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a6/
%G ru
%F MZM_2022_112_5_a6
A. S. Mishchenko. Maslov Index on Symplectic Manifolds. With Supplement by A.~T.~Fomenko ``Constructing the Generalized Maslov Class for the Total Space $W=\mathbb{T}^*(M)$ of the Cotangent Bundle''. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 718-732. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a6/

[1] A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Math., 1764, Springer, Berlin, 2008 | DOI | MR

[2] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh dtfferentstalnykh uravnenii, Faktorial, M., 1995 | MR

[3] V. A. Vasilev, Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000

[4] A. T. Fomenko, Simplekicheskaya geometriya, Izd-vo Mosk. un-ta, 1988

[5] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl

[6] D. B. Fuks, “O kharakteristicheskikh klassakh Maslova–Arnolda”, Dokl. AN SSSR, 178:2 (1968), 303–306 | MR | Zbl