Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 705-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\eta$-invariants for a class of parameter-dependent nonlocal operators associated with an isometric action of a discrete group of polynomial growth on a smooth closed manifold are studied. The $\eta$-invariant is defined as the regularization of the winding number. The formula for the variation of the $\eta$-invariant when the operator changes is obtained. The results are based on the study of asymptotic expansions of traces of parameter-dependent nonlocal operators.
Keywords: elliptic operator, parameter-dependent operator, nonlocal operator
Mots-clés : $\eta$-invariant.
@article{MZM_2022_112_5_a5,
     author = {K. N. Zhuikov and A. Yu. Savin},
     title = {Eta-Invariants for {Parameter-Dependent} {Operators} {Associated} with an {Action} of a {Discrete} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {705--717},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/}
}
TY  - JOUR
AU  - K. N. Zhuikov
AU  - A. Yu. Savin
TI  - Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group
JO  - Matematičeskie zametki
PY  - 2022
SP  - 705
EP  - 717
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/
LA  - ru
ID  - MZM_2022_112_5_a5
ER  - 
%0 Journal Article
%A K. N. Zhuikov
%A A. Yu. Savin
%T Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group
%J Matematičeskie zametki
%D 2022
%P 705-717
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/
%G ru
%F MZM_2022_112_5_a5
K. N. Zhuikov; A. Yu. Savin. Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 705-717. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/

[1] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[2] J. Cheeger, “$\eta$-invariants, the adiabatic approximation and conical singularities”, J. Differential Geom., 26 (1987), 175–221 | MR | Zbl

[3] W. Müller, “Eta-invariants and manifolds with boundary”, J. Differential Geom., 40 (1994), 311–377 | MR

[4] J.-M. Bismut, J. Cheeger, “$\eta$-invariants and their adiabatic limits”, J. Amer. Math. Soc., 2:1 (1989), 33–70 | MR | Zbl

[5] X. Dai, “Adiabatic limits, non-multiplicativity of signature and the Leray spectral sequence”, J. Amer. Math. Soc., 4 (1991), 265–321 | MR | Zbl

[6] H. Donnelly, “Eta-invariants for ${G}$-spaces.”, Indiana Univ. Math. J., 27 (1978), 889–918 | DOI | MR | Zbl

[7] C. Farsi, “Orbifold $\eta$-invariants”, Indiana Univ. Math. J., 56:2 (2007), 501–521 | DOI | MR | Zbl

[8] R. Melrose, “The eta invariant and families of pseudodifferential operators”, Math. Res. Lett., 2:5 (1995), 541–561 | DOI | MR | Zbl

[9] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (117) (1964), 53–161 | MR | Zbl

[10] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[11] M. Wodzicki, “Noncommutative residue. I. Fundamentals”, $K$-Theory, Arithmetic and Geometry, Lect. Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR

[12] B. Fedosov, B.-W. Schulze, N. Tarkhanov, “The index of elliptic operators on manifolds with conical points”, Selecta Math. (N.S.), 5:4 (1999), 467–506 | DOI | MR | Zbl

[13] B. V. Fedosov, B.-W. Schulze, N. Tarkhanov, “The index of higher order operators on singular surfaces”, Pacific J. Math., 191:1 (1999), 25–48 | DOI | MR | Zbl

[14] B. Fedosov, B.-W. Schulze, N. Tarkhanov, “A general index formula on toric manifolds with conical points”, Approaches to Singular Analysis, Oper. Theory Adv. Appl., 125, Birkhäuser, Basel, 2001, 234–256 | MR | Zbl

[15] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[16] A. Antonevich, A. Lebedev, Functional-Differential Equations. I. $C^*$-Theory, Longman, Harlow, 1994 | MR | Zbl

[17] A. B. Antonevich, A. V. Lebedev, “Functional equations and functional operator equations. A $C^\ast$-algebraic approach”, Proceedings of the St. Petersburg Mathematical Society, Vol. VI, Amer. Math. Soc. Transl. Ser. 2, 199, Providence, RI, 2000, 25–116 | MR | Zbl

[18] A. L. Skubachevskii, Elliptic functional differential equations and applications, Birkhäuser, Basel, Boston, Berlin, 1997 | MR | Zbl

[19] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry, Birkhäuser, Basel, 2008 | MR | Zbl

[20] A. Yu. Savin, B. Yu. Sternin, “Ellipticheskie $G$-operatory na mnogoobraziyakh s izolirovannymi osobennostyami”, SMFN, 59, RUDN, M., 2016, 173–191

[21] A. L. Skubachevskii, “Nonlocal elliptic problems in infinite cylinder and applications”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 847–868 | DOI | MR | Zbl

[22] K. N. Zhuikov, A. Yu. Savin, “Eta-invariant dlya semeistv s parametrom i periodicheskimi koeffitsientami”, Ufimsk. matem. zhurn., 14:2 (2022), 35–55 | MR

[23] D. Perrot, “Local index theory for operators associated with Lie groupoid actions”, J. Topol. Anal., 14:2 (2021), 297–341 | DOI | MR

[24] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[25] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR

[26] Yu. Egorov, B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Birkhäuser, Boston, 1997 | MR | Zbl

[27] M. Lesch, M. Pflaum, “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Amer. Math. Soc., 352:11 (2000), 4911–4936 | DOI | MR | Zbl

[28] L. B. Schweitzer, “Spectral invariance of dense subalgebras of operator algebras”, Internat. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl

[29] M. Zworski, Semiclassical Analysis, Grad. Stud. Math., 138, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl