Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 705-717
Voir la notice de l'article provenant de la source Math-Net.Ru
$\eta$-invariants for a class of parameter-dependent nonlocal operators associated with an isometric action of a discrete group of polynomial growth on a smooth closed manifold are studied. The $\eta$-invariant is defined as the regularization of the winding number. The formula for the variation of the $\eta$-invariant when the operator changes is obtained. The results are based on the study of asymptotic expansions of traces of parameter-dependent nonlocal operators.
Keywords:
elliptic operator, parameter-dependent operator, nonlocal operator
Mots-clés : $\eta$-invariant.
Mots-clés : $\eta$-invariant.
@article{MZM_2022_112_5_a5,
author = {K. N. Zhuikov and A. Yu. Savin},
title = {Eta-Invariants for {Parameter-Dependent} {Operators} {Associated} with an {Action} of a {Discrete} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {705--717},
publisher = {mathdoc},
volume = {112},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/}
}
TY - JOUR AU - K. N. Zhuikov AU - A. Yu. Savin TI - Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group JO - Matematičeskie zametki PY - 2022 SP - 705 EP - 717 VL - 112 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/ LA - ru ID - MZM_2022_112_5_a5 ER -
K. N. Zhuikov; A. Yu. Savin. Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 705-717. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a5/