On Holomorphic Coverings of Planar Domains
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 692-704

Voir la notice de l'article provenant de la source Math-Net.Ru

We have previously shown that a $p$-fold holomorphic covering of a domain in the complex plane by another domain is extremal in the majorization principle for $p$-valent functions and quadratic forms associated with Green's functions of these domains. In this paper, dual majorization principles involving both Green's and Neumann functions are obtained, in which $p$-fold coverings are also extremal. The results are exemplified by applications of these principles to geometric function theory.
Keywords: holomorphic covering, $p$-valent function, holomorphic function, Green's function, Neumann function, condenser capacity.
@article{MZM_2022_112_5_a4,
     author = {V. N. Dubinin},
     title = {On {Holomorphic} {Coverings} of {Planar} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--704},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On Holomorphic Coverings of Planar Domains
JO  - Matematičeskie zametki
PY  - 2022
SP  - 692
EP  - 704
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/
LA  - ru
ID  - MZM_2022_112_5_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On Holomorphic Coverings of Planar Domains
%J Matematičeskie zametki
%D 2022
%P 692-704
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/
%G ru
%F MZM_2022_112_5_a4
V. N. Dubinin. On Holomorphic Coverings of Planar Domains. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 692-704. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/