On Holomorphic Coverings of Planar Domains
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 692-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have previously shown that a $p$-fold holomorphic covering of a domain in the complex plane by another domain is extremal in the majorization principle for $p$-valent functions and quadratic forms associated with Green's functions of these domains. In this paper, dual majorization principles involving both Green's and Neumann functions are obtained, in which $p$-fold coverings are also extremal. The results are exemplified by applications of these principles to geometric function theory.
Keywords: holomorphic covering, $p$-valent function, holomorphic function, Green's function, Neumann function, condenser capacity.
@article{MZM_2022_112_5_a4,
     author = {V. N. Dubinin},
     title = {On {Holomorphic} {Coverings} of {Planar} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--704},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On Holomorphic Coverings of Planar Domains
JO  - Matematičeskie zametki
PY  - 2022
SP  - 692
EP  - 704
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/
LA  - ru
ID  - MZM_2022_112_5_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On Holomorphic Coverings of Planar Domains
%J Matematičeskie zametki
%D 2022
%P 692-704
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/
%G ru
%F MZM_2022_112_5_a4
V. N. Dubinin. On Holomorphic Coverings of Planar Domains. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 692-704. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a4/

[1] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962

[2] M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, “The Schwarz lemma: rigidity and dynamics”, Harmonic and Complex Analysis and Its Applications, Springer, Cham, 2014, 135–230 | MR | Zbl

[3] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR | Zbl

[4] V. N. Dubinin, “Printsip mazhoratsii dlya $p$-listnykh funktsii”, Matem. zametki, 65:4 (1999), 533–541 | DOI | MR | Zbl

[5] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[6] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotopoi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk., 1983, no. 3, 36–38 | MR | Zbl

[7] V. N. Dubinin, “O printsipakh mazhoratsii dlya meromorfnykh funktsii”, Matem. zametki, 84:6 (2008), 803–808 | DOI | MR | Zbl

[8] V. N. Dubini, “K rezultatam I. P. Mityuka o povedenii vnutrennego radiusa oblasti i emkosti kondensatora pri regulyarnykh otobrazheniyakh”, Analiticheskaya teoriya chisel i teoriya funktsii. 24, Zap. nauchn. sem. POMI, 371, POMI, SPb., 2009, 37–55

[9] D. Karp, E. Prilepkina, “Reduced modules with free boundary and its applications”, Ann. Acad. Sci. Fenn. Math., 34:2 (2009), 353–378 | MR | Zbl

[10] V. Bolotnikov, “Several inequalities for the Schwarzian derivative of a bounded analytic function”, Complex Var. Elliptic Equ., 64:7 (2019), 1093–1102 | DOI | MR | Zbl

[11] D. Kraus, O. Roth, “Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 111–130 | MR | Zbl

[12] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[13] V. N. Dubinin, “O proizvodnoi Shvartsa $p$-listnoi funktsii”, Matem. zametki, 107:6 (2020), 865–872 | DOI | MR | Zbl

[14] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Matem. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl

[15] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl