Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 665-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing semiclassical asymptotics for the tunnel splitting of the spectrum of an operator defined on an irreducible representation of the Lie algebra $\operatorname{su}(1,1)$. It is assumed that the operator is a quadratic function of the generators of the algebra. We present coherent states and a unitary coherent transform that allow us to reduce the problem to the analysis of a second-order differential operator in the space of holomorphic functions. Semiclassical asymptotic spectral series and the corresponding wave functions are constructed as decompositions in coherent states. For some values of the system parameters, the minimal energy corresponds to a pair of nondegenerate equilibria, and the discrete spectrum of the operator has an exponentially small tunnel splitting of the levels. We apply the complex WKB method to prove asymptotic formulas for the tunnel splitting of the energies. We also show that, in contrast to the one-dimensional Schrödinger operator, the tunnel splitting in this problem not only decays exponentially but also contains an oscillating factor, which can be interpreted as tunneling interference between distinct instantons. We also show that, for some parameter values, the tunneling is completely suppressed and some of the spectral levels are doubly degenerate, which is not typical of one-dimensional systems.
Keywords: semiclassical approximation, WKB method, tunnel splitting.
@article{MZM_2022_112_5_a2,
     author = {E. V. Vybornyi and S. V. Rumyantseva},
     title = {Semiclassical {Asymptotics} of {Oscillating} {Tunneling} for a {Quadratic} {Hamiltonian} on the {Algebra~}$\operatorname{su}(1,1)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--681},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/}
}
TY  - JOUR
AU  - E. V. Vybornyi
AU  - S. V. Rumyantseva
TI  - Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 665
EP  - 681
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/
LA  - ru
ID  - MZM_2022_112_5_a2
ER  - 
%0 Journal Article
%A E. V. Vybornyi
%A S. V. Rumyantseva
%T Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$
%J Matematičeskie zametki
%D 2022
%P 665-681
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/
%G ru
%F MZM_2022_112_5_a2
E. V. Vybornyi; S. V. Rumyantseva. Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 665-681. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/

[1] P. Woit, Quantum Theory, Groups and Representations. An Introduction, Springer, Cham, 2017 | MR | Zbl

[2] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991

[3] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1950 | MR

[4] M. Karasev, E. Novikova, “Coherent transform of the spectral problem and algebras with nonlinear commutation relations”, J. Math. Sci. (New York), 95:6 (1999), 2703–2798 | DOI | MR | Zbl

[5] A. Y. Anikin, S. Y. Dobrokhotov, “Diophantine Tori and Pragmatic Calculation of Quasimodes for Operators with Integrable Principal Symbol”, Russ. J. Math. Phys., 27:3 (2020), 299–308 | DOI | MR | Zbl

[6] E. M. Novikova, “Novyi podkhod k protsedure kvantovogo usredneniya gamiltoniana rezonansnogo garmonicheskogo ostsillyatora s polinomialnym vozmuscheniem na primere spektralnoi zadachi dlya tsilindricheskoi lovushki Penninga”, Matem. zametki, 109:5 (2021), 747–767 | DOI | Zbl

[7] S. Y. Dobrokhotov, A. I. Shafarevich, ““Momentum” tunneling between tori and the splitting of eigenvalues of the Laplace–Beltrami operator on Liouville surfaces”, Math. Phys., Anal. and Geom., 2:2 (1999), 141–177 | DOI | Zbl

[8] M. Avendano-Camacho, J. A. Vallejo, Y. M. Vorobiev, “Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems”, J. Math. Phys., 54:8 (2013), 082704 | DOI | MR | Zbl

[9] M. Karasev, “Adiabatics using phase space translations and small parameter “dynamics””, Russ. J. Math. Phys., 22:1 (2015), 20–25 | DOI | MR | Zbl

[10] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[11] M. Karasev, E. Novikova, “Non-Lie permutation representations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Transl. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 2008, 1–202 | MR

[12] E. V. Vybornyi, “Rasscheplenie energii pri dinamicheskom tunnelirovanii”, TMF, 181:2 (2014), 337–348 | DOI | MR | Zbl

[13] M. V. Karasev, E. M. Novikova, “Algebra i kvantovaya geometriya mnogochastotnogo rezonansa”, Izv. RAN. Ser. matem., 74:6 (2010), 55–106 | DOI | MR | Zbl

[14] M. Karasev, E. Vybornyi, “Bi-Orbital States in Hyperbolic Traps”, Russ. J. Math. Phys., 25 (2018), 500–508 | DOI | MR | Zbl

[15] F. Herfurth, H. K. Blaum, Trapped Charged Particles and Fundamental Interactions, Lecture Notes in Phys., 749, Springer, Berlin, 2008 | DOI

[16] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press, Cambridge, 1995

[17] C. C. Gerry, “Berry's phase in the degenerate parametric amplifier”, Phys. Rev. A, 39:6 (1989), 3204 | DOI | MR

[18] M. Ban, “$\operatorname{SU}(1,1)$ Lie algebraic approach to linear dissipative processes in quantum optics”, J. Math. Phys., 33:9 (1992), 3213–3228 | DOI | MR | Zbl

[19] V. Sunilkumar, B. A. Bambah, R. Jagannathan, P. K. Panigrahi, V. Srinivasan, “Coherent states of nonlinear algebras: applications to quantum optics”, J. Opt. B Quantum Semiclass. Opt., 2:2 (2000), 126 | DOI | MR

[20] M. G. Hu, J. L. Chen, “Quantum dynamical algebra $\operatorname{SU}(1,1)$ in one-dimensional exactly solvable potentials”, Internat. J. Theoret. Phys., 46:8 (2007), 2119–2137 | DOI | MR | Zbl

[21] G. Lévai, “Solvable potentials associated with $\operatorname{su}(1,1)$ algebras: a systematic study”, J. Phys. A, 27:11 (1994), 3809 | MR

[22] A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations”, Phys. Rev. B, 64:9 (2001), 094413 | DOI

[23] A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. II. Asymmetric configurations”, Phys. Rev. B, 64:9 (2001), 094414 | DOI

[24] M. S. Foss-Feig, J. R. Friedman, “Geometric-phase-effect tunnel-splitting oscillations in single-molecule magnets with fourth-order anisotropy induced by orthorhombic distortion”, Europhys. Lett., 86:2 (2009), 27002 | DOI

[25] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra dvumernogo operatora Khartri vblizi lokalnogo maksimuma sobstvennykh znachenii v spektralnom klastere”, TMF, 205:3 (2020), 467–483 | DOI | Zbl

[26] V. P. Maslov, “Globalnaya eksponentsialnaya asimptotika reshenii tunnelnykh uravnenii i zadachi o bolshikh ukloneniyakh”, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize, Tr. MIAN SSSR, 163, 1984, 150–180 | MR | Zbl

[27] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[28] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[29] V. E. Nazaikinskii, B. Yu. Sternin, V. E Shatalov, Metody nekommutativnogo analiza, Tekhnosfera, M., 2002

[30] M. V. Karasev, M. B. Kozlov, “Quantum and semiclassical representations over Lagrangian submanifolds in $\operatorname{su}(2)*$, $\operatorname{so}(4)*$, and $\operatorname{su}(1,1)$”, J. Math. Phys., 34:11 (1993), 4986–5006 | DOI | MR | Zbl

[31] M. V. Karasev, “Svyaznosti na lagranzhevykh podmnogoobraziyakh i nekotorye zadachi kvaziklassicheskogo priblizheniya. I”, Differentsialnaya geometriya, gruppy Li i mekhanika. 10, Zap. nauchn. sem. LOMI, 172, Izd-vo «Nauka», Leningrad. otd., L., 1989, 41–54 | MR | Zbl

[32] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. V desyati tomakh. Tom III. Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1981

[33] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[34] M. A. Evgrafov, M. V. Fedoryuk, “Asimptotika reshenii uravneniya $w''(z)-p(z,\lambda)w(z)=0$ pri $\lambda\to\infty$ v kompleksnoi plotnosti $z$”, UMN, 21:1 (127) (1966), 3–50 | MR | Zbl

[35] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983