Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_5_a2, author = {E. V. Vybornyi and S. V. Rumyantseva}, title = {Semiclassical {Asymptotics} of {Oscillating} {Tunneling} for a {Quadratic} {Hamiltonian} on the {Algebra~}$\operatorname{su}(1,1)$}, journal = {Matemati\v{c}eskie zametki}, pages = {665--681}, publisher = {mathdoc}, volume = {112}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/} }
TY - JOUR AU - E. V. Vybornyi AU - S. V. Rumyantseva TI - Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$ JO - Matematičeskie zametki PY - 2022 SP - 665 EP - 681 VL - 112 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/ LA - ru ID - MZM_2022_112_5_a2 ER -
%0 Journal Article %A E. V. Vybornyi %A S. V. Rumyantseva %T Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$ %J Matematičeskie zametki %D 2022 %P 665-681 %V 112 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/ %G ru %F MZM_2022_112_5_a2
E. V. Vybornyi; S. V. Rumyantseva. Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra~$\operatorname{su}(1,1)$. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 665-681. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a2/
[1] P. Woit, Quantum Theory, Groups and Representations. An Introduction, Springer, Cham, 2017 | MR | Zbl
[2] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991
[3] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1950 | MR
[4] M. Karasev, E. Novikova, “Coherent transform of the spectral problem and algebras with nonlinear commutation relations”, J. Math. Sci. (New York), 95:6 (1999), 2703–2798 | DOI | MR | Zbl
[5] A. Y. Anikin, S. Y. Dobrokhotov, “Diophantine Tori and Pragmatic Calculation of Quasimodes for Operators with Integrable Principal Symbol”, Russ. J. Math. Phys., 27:3 (2020), 299–308 | DOI | MR | Zbl
[6] E. M. Novikova, “Novyi podkhod k protsedure kvantovogo usredneniya gamiltoniana rezonansnogo garmonicheskogo ostsillyatora s polinomialnym vozmuscheniem na primere spektralnoi zadachi dlya tsilindricheskoi lovushki Penninga”, Matem. zametki, 109:5 (2021), 747–767 | DOI | Zbl
[7] S. Y. Dobrokhotov, A. I. Shafarevich, ““Momentum” tunneling between tori and the splitting of eigenvalues of the Laplace–Beltrami operator on Liouville surfaces”, Math. Phys., Anal. and Geom., 2:2 (1999), 141–177 | DOI | Zbl
[8] M. Avendano-Camacho, J. A. Vallejo, Y. M. Vorobiev, “Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems”, J. Math. Phys., 54:8 (2013), 082704 | DOI | MR | Zbl
[9] M. Karasev, “Adiabatics using phase space translations and small parameter “dynamics””, Russ. J. Math. Phys., 22:1 (2015), 20–25 | DOI | MR | Zbl
[10] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR
[11] M. Karasev, E. Novikova, “Non-Lie permutation representations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Transl. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 2008, 1–202 | MR
[12] E. V. Vybornyi, “Rasscheplenie energii pri dinamicheskom tunnelirovanii”, TMF, 181:2 (2014), 337–348 | DOI | MR | Zbl
[13] M. V. Karasev, E. M. Novikova, “Algebra i kvantovaya geometriya mnogochastotnogo rezonansa”, Izv. RAN. Ser. matem., 74:6 (2010), 55–106 | DOI | MR | Zbl
[14] M. Karasev, E. Vybornyi, “Bi-Orbital States in Hyperbolic Traps”, Russ. J. Math. Phys., 25 (2018), 500–508 | DOI | MR | Zbl
[15] F. Herfurth, H. K. Blaum, Trapped Charged Particles and Fundamental Interactions, Lecture Notes in Phys., 749, Springer, Berlin, 2008 | DOI
[16] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press, Cambridge, 1995
[17] C. C. Gerry, “Berry's phase in the degenerate parametric amplifier”, Phys. Rev. A, 39:6 (1989), 3204 | DOI | MR
[18] M. Ban, “$\operatorname{SU}(1,1)$ Lie algebraic approach to linear dissipative processes in quantum optics”, J. Math. Phys., 33:9 (1992), 3213–3228 | DOI | MR | Zbl
[19] V. Sunilkumar, B. A. Bambah, R. Jagannathan, P. K. Panigrahi, V. Srinivasan, “Coherent states of nonlinear algebras: applications to quantum optics”, J. Opt. B Quantum Semiclass. Opt., 2:2 (2000), 126 | DOI | MR
[20] M. G. Hu, J. L. Chen, “Quantum dynamical algebra $\operatorname{SU}(1,1)$ in one-dimensional exactly solvable potentials”, Internat. J. Theoret. Phys., 46:8 (2007), 2119–2137 | DOI | MR | Zbl
[21] G. Lévai, “Solvable potentials associated with $\operatorname{su}(1,1)$ algebras: a systematic study”, J. Phys. A, 27:11 (1994), 3809 | MR
[22] A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations”, Phys. Rev. B, 64:9 (2001), 094413 | DOI
[23] A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. II. Asymmetric configurations”, Phys. Rev. B, 64:9 (2001), 094414 | DOI
[24] M. S. Foss-Feig, J. R. Friedman, “Geometric-phase-effect tunnel-splitting oscillations in single-molecule magnets with fourth-order anisotropy induced by orthorhombic distortion”, Europhys. Lett., 86:2 (2009), 27002 | DOI
[25] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra dvumernogo operatora Khartri vblizi lokalnogo maksimuma sobstvennykh znachenii v spektralnom klastere”, TMF, 205:3 (2020), 467–483 | DOI | Zbl
[26] V. P. Maslov, “Globalnaya eksponentsialnaya asimptotika reshenii tunnelnykh uravnenii i zadachi o bolshikh ukloneniyakh”, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize, Tr. MIAN SSSR, 163, 1984, 150–180 | MR | Zbl
[27] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl
[28] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[29] V. E. Nazaikinskii, B. Yu. Sternin, V. E Shatalov, Metody nekommutativnogo analiza, Tekhnosfera, M., 2002
[30] M. V. Karasev, M. B. Kozlov, “Quantum and semiclassical representations over Lagrangian submanifolds in $\operatorname{su}(2)*$, $\operatorname{so}(4)*$, and $\operatorname{su}(1,1)$”, J. Math. Phys., 34:11 (1993), 4986–5006 | DOI | MR | Zbl
[31] M. V. Karasev, “Svyaznosti na lagranzhevykh podmnogoobraziyakh i nekotorye zadachi kvaziklassicheskogo priblizheniya. I”, Differentsialnaya geometriya, gruppy Li i mekhanika. 10, Zap. nauchn. sem. LOMI, 172, Izd-vo «Nauka», Leningrad. otd., L., 1989, 41–54 | MR | Zbl
[32] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. V desyati tomakh. Tom III. Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1981
[33] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl
[34] M. A. Evgrafov, M. V. Fedoryuk, “Asimptotika reshenii uravneniya $w''(z)-p(z,\lambda)w(z)=0$ pri $\lambda\to\infty$ v kompleksnoi plotnosti $z$”, UMN, 21:1 (127) (1966), 3–50 | MR | Zbl
[35] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983