The Dimension Conjecture: Solution and Future Prospects
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 784-800

Voir la notice de l'article provenant de la source Math-Net.Ru

Counterexamples to the dimension conjecture in CR geometry are constructed. This conjecture is organically related to the model surface method; it was refined as the method was developed. On the one hand, these counterexamples give a final negative solution of the conjecture in its original setting. On the other hand, they make it possible to distinguish a natural class of manifolds (nondegenerate manifolds) for which the conjecture makes sense and is of interest. The main questions arising in this direction are formulated. A series of examples interesting from the point of view of the model surface method are considered.
Keywords: CR manifold, Bloom–Graham type.
Mots-clés : automorphism
@article{MZM_2022_112_5_a10,
     author = {M. A. Stepanova},
     title = {The {Dimension} {Conjecture:} {Solution} and {Future} {Prospects}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {784--800},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - The Dimension Conjecture: Solution and Future Prospects
JO  - Matematičeskie zametki
PY  - 2022
SP  - 784
EP  - 800
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/
LA  - ru
ID  - MZM_2022_112_5_a10
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T The Dimension Conjecture: Solution and Future Prospects
%J Matematičeskie zametki
%D 2022
%P 784-800
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/
%G ru
%F MZM_2022_112_5_a10
M. A. Stepanova. The Dimension Conjecture: Solution and Future Prospects. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 784-800. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/