The Dimension Conjecture: Solution and Future Prospects
Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 784-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Counterexamples to the dimension conjecture in CR geometry are constructed. This conjecture is organically related to the model surface method; it was refined as the method was developed. On the one hand, these counterexamples give a final negative solution of the conjecture in its original setting. On the other hand, they make it possible to distinguish a natural class of manifolds (nondegenerate manifolds) for which the conjecture makes sense and is of interest. The main questions arising in this direction are formulated. A series of examples interesting from the point of view of the model surface method are considered.
Keywords: CR manifold, Bloom–Graham type.
Mots-clés : automorphism
@article{MZM_2022_112_5_a10,
     author = {M. A. Stepanova},
     title = {The {Dimension} {Conjecture:} {Solution} and {Future} {Prospects}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {784--800},
     publisher = {mathdoc},
     volume = {112},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - The Dimension Conjecture: Solution and Future Prospects
JO  - Matematičeskie zametki
PY  - 2022
SP  - 784
EP  - 800
VL  - 112
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/
LA  - ru
ID  - MZM_2022_112_5_a10
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T The Dimension Conjecture: Solution and Future Prospects
%J Matematičeskie zametki
%D 2022
%P 784-800
%V 112
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/
%G ru
%F MZM_2022_112_5_a10
M. A. Stepanova. The Dimension Conjecture: Solution and Future Prospects. Matematičeskie zametki, Tome 112 (2022) no. 5, pp. 784-800. http://geodesic.mathdoc.fr/item/MZM_2022_112_5_a10/

[1] H. Poincaré, “Les fonctions analytiques de deux variables et la representation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl

[2] V. K. Beloshapka, “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | DOI | MR | Zbl

[3] Th. Bloom, I. Graham, “On “type” conditions for generic real submanifolds of $C^n$”, Invent. Math., 40 (1977), 217–243 | DOI | MR

[4] V. K. Beloshapka, “CR-manifolds of finite Bloom-Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174 | DOI | MR | Zbl

[5] V. K. Beloshapka, “Kontrprimer k gipoteze o razmernosti”, Matem. zametki, 81:1 (2007), 136–139 | DOI | MR | Zbl

[6] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real Submanifolds in Complex Space and Their Mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl

[7] V. K. Beloshapka, Model CR Surfaces: Weighted Approach, 2003, arXiv: 2112.14521

[8] M. Kolar, I. Kossovskiy, A Complete Normal Form for Everywhere Levi Degenerate Hypersurfaces in $C^3$, 2019, arXiv: 1905.05629

[9] V. K. Beloshapka, “Simmetrii veschestvennykh giperpoverkhnostei trekhmernogo kompleksnogo prostranstva”, Matem. zametki, 78:2 (2005), 171–179 | DOI | MR | Zbl

[10] V. K. Beloshapka, “Modifikatsiya konstruktsii Puankare i ee primenenie v $CR$-geometrii giperpoverkhnostei v $\mathbf{C}^4$”, Izv. RAN. Ser. matem., 86:5 (2022), 18–42 | DOI | Zbl

[11] A. Isaev, D. Zaitsev, “Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms”, J. Geom. Anal., 23 (2013), 1571–1605 | DOI | MR | Zbl

[12] V. K. Beloshapka, “Can a stabilizer be eight-dimensional”, Russ. J. Math. Phys., 19:2 (2012), 135–145 | DOI | MR | Zbl

[13] M. Kolar, B. Lamel, “Holomorphic equivalence and nonlinear symmetries of ruled hypersurfaces in $\mathbb{C}^2$”, J. Geom. Anal., 25 (2015), 1240–1281 | DOI | MR | Zbl

[14] I. Kossovskiy, R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl

[15] A. Isaev, B. Kruglikov, “A short proof of the Dimension Conjecture for real hypersurfaces in $C^2$”, Proc. Amer. Math. Soc., 144 (2016), 4395–4399 | DOI | MR | Zbl

[16] A. Isaev, B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, Adv. Math., 322 (2017), 530–564 | DOI | MR | Zbl

[17] B. Kruglikov, “Submaximally Symmetric CR-Structures”, J. Geom. Anal., 26:2 (2016), 3090–3097 | DOI | MR | Zbl

[18] B. Kruglikov, “Blow-ups and infinitesimal automorphisms of CR manifolds”, Math. Z., 296 (2020), 1701–1724 | DOI | MR | Zbl

[19] M. A. Stepanova, “O CR-mnogoobraziyakh beskonechnogo tipa po Blumu–Gremu”, Tr. MMO, 82, no. 2, MTsNMO, M., 2021, 349–368