Asymptotic Solutions of the Discrete Painlev\'e Equation of Second Type
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 613-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several classes of asymptotic solutions of the discrete Painlevé equation of second type (dPII) for large values of the independent variable are found. The cases of complex and real solutions are considered. as well as special solutions related to symmetric group representations.
Keywords: discrete Painlevé equation of second type, Painlevé transcendents, asymptotic solutions, elliptic functions, symmetric group representations.
@article{MZM_2022_112_4_a9,
     author = {V. Yu. Novokshenov},
     title = {Asymptotic {Solutions} of the {Discrete} {Painlev\'e} {Equation} of {Second} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {613--624},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a9/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Asymptotic Solutions of the Discrete Painlev\'e Equation of Second Type
JO  - Matematičeskie zametki
PY  - 2022
SP  - 613
EP  - 624
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a9/
LA  - ru
ID  - MZM_2022_112_4_a9
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Asymptotic Solutions of the Discrete Painlev\'e Equation of Second Type
%J Matematičeskie zametki
%D 2022
%P 613-624
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a9/
%G ru
%F MZM_2022_112_4_a9
V. Yu. Novokshenov. Asymptotic Solutions of the Discrete Painlev\'e Equation of Second Type. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 613-624. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a9/

[1] N. Joshi, “Discrete Painlevé equations”, Notices Amer. Math. Soc., 67:6 (2020), 797–805 | DOI | MR | Zbl

[2] A. S. Fokas, B. Grammaticos, A. Ramani, “From continuous to discrete Painlevé equations”, J. Math. Anal. Appl., 180 (1993), 342–360 | DOI | MR | Zbl

[3] S. Shimomura, “Continuous limit of the difference second Painlevé equation and its asymptotic solutions”, J. Math. Soc. Japan, 64:3 (2012), 733–781 | DOI | MR | Zbl

[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, RKhD, Izhevsk, 2006

[5] V. Perival, D. Shevitz, “Unitary matrix models as exactly solvable string theory”, Phys. Rev. Lett., 64:12 (1990), 1326–1329 | DOI | MR

[6] P. Rossi, M. Campostrini, E. Vicari, “The large N expansion of unitary matrix models”, Phys. Rept., 302:12 (1998), 143–209 | DOI | MR

[7] A. Borodin, “Discrete gap probabilities and discrete Painleé equations”, Duke Math. J., 117:3 (2000), 489–542 | MR

[8] A. Borodin, “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math. (2), 160:3 (2004), 1141–1182 | DOI | MR

[9] G. Julia, “Memoire sur la permutabilité des fractions rationelles”, Ann. Sci. École Norm. Sup. (3), 39 (1922), 131–152 | MR

[10] A. Likhtenberg, M. Liberman, Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984 | MR

[11] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, 14, Nauka, M., 1967 | MR | Zbl

[12] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl

[13] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006

[14] I. M. Gessel, “Symmetric functions and precursiveness”, J. Combin. Theory, Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl

[15] I. I. Hirschman, “The strong Szegö limit theorem for Toeplitz determinants”, Amer. J. Math., 88:3 (1966), 577–614 | DOI | MR | Zbl

[16] J. Baik, P. Deift, K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12:4 (1999), 1119–1178 | DOI | MR | Zbl