Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_112_4_a7, author = {Yu. A. Kordyukov}, title = {Berezin--Toeplitz {Quantization} on {Symplectic} {Manifolds} of {Bounded} {Geometry}}, journal = {Matemati\v{c}eskie zametki}, pages = {586--600}, publisher = {mathdoc}, volume = {112}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a7/} }
Yu. A. Kordyukov. Berezin--Toeplitz Quantization on Symplectic Manifolds of Bounded Geometry. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 586-600. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a7/
[1] B. Kostant, “Quantization and unitary representations”, Lectures in Modern Analysis and Applications, III, Lect. Notes in Math., 170, Springer, Berlin, 1970, 87–208 | DOI | MR
[2] J.-M. Souriau, Structure des systems dynamiques, Dunod, Paris, 1970 | MR
[3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Deformation theory and quantization”, Ann. Phys., 111 (1978), 61–151 | DOI | MR
[4] M. V. Karasev, V. P. Maslov, “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (240) (1984), 115–173 | MR | Zbl
[5] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR
[6] F. A. Berezin, “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38:5 (1974), 1116–1175 | MR | Zbl
[7] F. A. Berezin, “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR | Zbl
[8] S. T. Ali, M. Engliš, “Quantization methods: a guide for physicists and analysts”, Rev. Math. Phys., 17 (2005), 391–490 | DOI | MR | Zbl
[9] M. Engliš, “An excursion into Berezin–Toeplitz quantization and related topics”, Quantization, PDEs, and geometry, Oper. Theory Adv. Appl., 251, Birkhäuser, Cham, 2016, 69–115 | MR | Zbl
[10] X. Ma, “Geometric quantization on Kähler and symplectic manifolds”, Proceedings of the International Congress of Mathematicians, II, Hindustan Book Agency, New Delhi, 2010, 785–810 | MR
[11] M. Schlichenmaier, “Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results”, Adv. Math. Phys., 2010, Art. ID 927280 | MR
[12] M. Bordemann, E. Meinrenken, M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and $gl(n)$, $n\to\infty$ limits”, Comm. Math. Phys., 165 (1994), 281–296 | DOI | MR | Zbl
[13] L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Ann. Math. Stud., 99, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl
[14] V. Guillemin, A. Uribe, “The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$”, Asymptotic Anal., 1 (1988), 105–113 | DOI | MR | Zbl
[15] Yu. A. Kordyukov, X. Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds of bounded geometry”, Comm. Partial Differential Equations, 44 (2019), 1037–1071 | DOI | MR | Zbl
[16] X. Ma, G. Marinescu, “Exponential estimate for the asymptotics of Bergman kernels”, Math. Ann., 362 (2015), 1327–1347 | DOI | MR | Zbl
[17] D. Borthwick, A. Uribe, “Almost complex structures and geometric quantization”, Math. Res. Lett., 3 (1996), 845–861 | DOI | MR | Zbl
[18] L. Ioos, W. Lu, X. Ma, G. Marinescu, “Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds”, J. Geom. Anal., 30 (2020), 2615–2646 | DOI | MR | Zbl
[19] Yu. A. Kordyukov, “Ob asimptoticheskikh razlozheniyakh obobschennykh yader Bergmana na simplekticheskikh mnogoobraziyakh”, Algebra i analiz, 30:2 (2018), 163–187 | MR
[20] L. Charles, “Quantization of compact symplectic manifolds”, J. Geom. Anal., 26 (2016), 2664–2710 | DOI | MR | Zbl
[21] C.-Y. Hsiao, G. Marinescu, “Berezin–Toeplitz quantization for lower energy forms”, Comm. Partial Differential Equations, 42 (2017), 895–942 | DOI | MR | Zbl
[22] X. Ma, G. Marinescu, “Toeplitz operators on symplectic manifolds”, J. Geom. Anal., 18 (2008), 565–611 | DOI | MR | Zbl
[23] W. Bauer, L. A. Coburn, “Uniformly continuous functions and quantization on the Fock space”, Bol. Soc. Mat. Mex. (3), 22 (2016), 669–677 | DOI | MR | Zbl
[24] D. Borthwick, “Microlocal techniques for semiclassical problems in geometric quantization”, Perspectives on Quantization, Contemp. Math., 214, Amer. Math. Soc., Providence, RI, 1998, 23–37 | MR | Zbl
[25] L. A. Coburn, “Deformation estimates for Berezin–Toeplitz quantization”, Comm. Math. Phys., 149 (1992), 415–424 | DOI | MR | Zbl
[26] W. Bauer, L. A. Coburn, R. Hagger, “Toeplitz quantization on Fock space”, J. Funct. Anal., 274 (2018), 3531–3551 | DOI | MR | Zbl
[27] W. Bauer, R. Hagger, N. Vasilevski, “Uniform continuity and quantization on bounded symmetric domains”, J. London Math. Soc.(2), 96 (2017), 345–366 | DOI | MR | Zbl
[28] D. Borthwick, A. Lesniewski, H. Upmeier, “Non-perturbative deformation quantization of Cartan domains”, J. Funct. Anal., 113 (1993), 153–176 | DOI | MR | Zbl
[29] M. Engliš, “Weighted Bergman kernels and quantization”, Comm. Math. Phys., 227 (2002), 211–241 | DOI | MR | Zbl
[30] S. Klimek, A. Lesniewskii, “Quantum Riemann surfaces I: the unit disc”, Comm. Math. Phys., 146 (1992), 103–122 | DOI | MR | Zbl
[31] M. Engliš, H. Upmeier, “Asymptotic expansions for Toeplitz operators on symmetric spaces of general type”, Trans. Amer. Math. Soc., 367 (2015), 423–476 | DOI | MR | Zbl
[32] X. Ma, G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Progr. Math., 254, Birkhäuser, Basel, 2007 | MR | Zbl
[33] X. Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds”, Adv. Math., 217 (2008), 1756–1815 | DOI | MR | Zbl
[34] X. Dai, K. Liu, X. Ma, “On the asymptotic expansion of Bergman kernel”, J. Differential Geom., 72 (2006), 1–41 | DOI | MR | Zbl
[35] Yu. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic manifolds of bounded geometry”, Anal. Math. Phys., 12 (2022), 22, 37 | DOI | MR | Zbl
[36] L. Charles, “Berezin–Toeplitz operators, a semi-classical approach”, Comm. Math. Phys., 239 (2003), 1–28 | DOI | MR | Zbl
[37] Yu. A. Kordyukov, “$L^p$-theory of elliptic differential operators on manifolds of bounded geometry”, Acta Appl. Math., 23 (1991), 223–260 | DOI | MR | Zbl
[38] Yu. A. Kordyukov, “Berezin–Toeplitz quantization associated with higher Landau levels of the Bochner Laplacian”, J. Spectr. Theory, 12:1 (2022), 143–167 | DOI | MR | Zbl