Fractional Kinetic Equations
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 567-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the idea of non-Markovian CTRW (continuous time random walk) approximation to the evolution of interacting particle systems, which leads to a general class of fractional kinetic measure-valued evolutions with variable order. We prove the well-posedness of the resulting new equations and present a probabilistic formula for their solutions. Though our method are quite general, for simplicity we treat in detail only the fractional versions of the interacting diffusions. The paper can be considered as a development of the ideas from the works of Belavkin and Maslov devoted to Markovian (quantum and classical) systems of interacting particles.
Keywords: fractional kinetic equations, interacting particles, fractional derivative of variable order, continuous time random walks (CTRW).
@article{MZM_2022_112_4_a6,
     author = {V. N. Kolokoltsov and M. S. Troeva},
     title = {Fractional {Kinetic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--585},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a6/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
AU  - M. S. Troeva
TI  - Fractional Kinetic Equations
JO  - Matematičeskie zametki
PY  - 2022
SP  - 567
EP  - 585
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a6/
LA  - ru
ID  - MZM_2022_112_4_a6
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%A M. S. Troeva
%T Fractional Kinetic Equations
%J Matematičeskie zametki
%D 2022
%P 567-585
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a6/
%G ru
%F MZM_2022_112_4_a6
V. N. Kolokoltsov; M. S. Troeva. Fractional Kinetic Equations. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 567-585. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a6/

[1] M. A. Leontovich, “Main equations of the kinetic theory from the point of view of random processes”, J. Exp. Theoret. Phys., 5 (1935), 211–231 | Zbl

[2] V. P. Belavkin, V. N. Kolokoltsov, “On general kinetic equation for many particle systems with interaction, fragmentation and coagulation”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459:2031 (2003), 727–748 | DOI | MR | Zbl

[3] V. P. Belavkin, V. P. Maslov, “Metod uniformizatsii v teorii nelineinykh gamiltonovykh sistem tipa Vlasova i Khartri”, TMF, 33:1 (1977), 17–31 | MR

[4] M. Kac, Probability and Related Topics in Physical Science, Intersci. Publ., London, 1959 | MR

[5] V. P. Maslov, S. E. Tariverdiev, “Asimptotika uravneniya Kolmogorova—Fellera dlya sistemy bolshogo chisla chastits”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 19, VINITI, M., 1982, 85–125 | MR | Zbl

[6] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Ser. Complex. Nonlinearity Chaos, 5, World Sci. Publ., Singapore, 2017 | MR | Zbl

[7] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., 301, Longman Sci., New York, 1994 | MR | Zbl

[8] I. Podlubny, “Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications”, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999 | MR | Zbl

[9] V. N. Kolokoltsov, CTRW Approximations for Fractional Equations With Variable Order, 2022, arXiv: 2203.04897

[10] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math., 182, Cambridge, Cambridge Univ. Press, 2010 | MR | Zbl

[11] V. N. Kolokoltsov, M. Troeva, “A new approach to fractional kinetic evolutions”, Fractal and Fractional, 6:2 (2022), 49 | DOI

[12] V. N. Kolokoltsov, “Obobschennye sluchainye bluzhdaniya v nepreryvnom vremeni (CTRW), subordinatsiya vremenami dostizheniya i drobnaya dinamika”, Teoriya veroyatn. i ee primen., 53:4 (2008), 684–703 | DOI | MR | Zbl

[13] A. N. Kochubei, Y. Kondratiev, “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | MR | Zbl

[14] V. N. Kolokoltsov, O. A. Malafeyev, Many Agent Games in Socio-economic Systems. Corruption, Inspection, Coalition Building, Network Growth, Security, Springer, Cham, 2019 | DOI | MR | Zbl

[15] V. N. Kolokoltsov, Differential Equations on Measures and Functional Spaces, Birkhäuser, Cham, 2019 | MR | Zbl

[16] M. M. Meerschaert, H. -P. Scheffler, Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice, John Wiley and Son, New York, 2001 | MR

[17] V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, De Gruyter Stud. Math., 38, Walter de Gruyter, Berlin, 2011 | MR

[18] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 2002 | MR | Zbl

[19] B. Goldys, M. Nendel, M. Röckner, Operator Semigroups in the Mixed Topology and the Infinitesimal Description of Markov Processes, 2022, arXiv: 2204.07484v1