Lauricella Function and the Conformal Mapping of Polygons
Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 500-520
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, some progress has been made in solving the problem of calculating the parameters of the Schwarz–Christoffel integral realizing a conformal mapping of a canonical domain onto a polygon. It is shown that an effective solution of this problem can be found by applying the formulas of analytic continuation of the Lauricella function $F_D^{(N)}$, which is a hypergeometric function of $N$ complex variables. Several new formulas for such a continuation of the function $F_D^{(N)}$ are presented that are oriented to the calculation of the parameters of the Schwarz–Christoffel integral in the “crowding” situation. An example of solving the parameter problem for a complicated polygon is given.
Keywords:
Schwarz–Christoffel integral, hypergeometric functions of many variables, analytic continuation, crowding.
@article{MZM_2022_112_4_a2,
author = {S. I. Bezrodnykh},
title = {Lauricella {Function} and the {Conformal} {Mapping} of {Polygons}},
journal = {Matemati\v{c}eskie zametki},
pages = {500--520},
publisher = {mathdoc},
volume = {112},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a2/}
}
S. I. Bezrodnykh. Lauricella Function and the Conformal Mapping of Polygons. Matematičeskie zametki, Tome 112 (2022) no. 4, pp. 500-520. http://geodesic.mathdoc.fr/item/MZM_2022_112_4_a2/